中华人民共和国国家标准给水排水工程管道结构设计规范GB 50332-2002条 文 说 明
批准部门:中华人民共和国建设部
施行日期:2 0 0 3 年3 月1 日
1 总 则
1.0.1 本条主要阐明本规范的内容,系针对给水排水工程中的各种管道结构设计,本属原规范《给水排水工程结构设计规范》GBJ 69-84 中有关管道结构部分。给水排水工程中应用的管道结构的材质、形状、制管工艺及连接构造型式众多,20世纪90年代中,国内各地区又引进、开发了新的管材,例如各种化学管材(UPVC、FRP、PE 等)和预应力钢筒混凝土管(PCCP)等,随着科学技术的不断持续发展,新颖材料的不断开拓,新的管材、管道结构也会随之涌现和发展,据此有必要将有关管道结构的内容,从原规范中分离出来,既方便工程技术人员的应用,也便于今后修订。考虑管道结构的材质众多,物理力学性能、结构构造、成型工艺各异,工程设计所需要控制的内容不同,例如对金属管道和非金属管道的要求、非金属管道中化学管材和混凝土管材的要求等,都是不相同的,因此应按不同材质的管道结构,分别独立制订规范,这样也可与国际上的工程建设标准、规范体系相协调,便于管理和更新。
据此,还必须考虑到在满足给水排水工程中使用功能的基础上,各种不同材质的管道结构,应具有相对统一的标准,主要是有关荷载(作用)的合理确定和结构可靠度标准。本条明确本规范的内容是适用各种材质管道结构,而并非针对某种材质的管道结构。即本规范内容将针对各种材质管道结构的共性要求作出规定,提供作为编制不同材质管道结构设计规范时的统一标准依据,切实贯彻国家的技术经济政策。
1.0.2 给水排水工程的涉及面很广,除城镇公用设施外,多类工业企业中同样需要,条文明确规定本规范的内容仅适用于工业企业中一般性的给水排水工程,而工业企业中有特殊要求的工程,可以不受本规范的约束(例如需要提高结构可靠度标准或需考虑特殊的荷载项目等)。
1.0.3 本条明确了本规范的编制原则。由于管道结构埋于地下,在运行过程中检测较为困难,因此各方面的统计数据十分不足,本规范仅根据《工程结构可靠度设计统一标准》GB 50153 规定的原则,通过工程校准制订。
1.0.4 本条明确了本规范与其他技术标准、规范的衔接关系,便于工程技术人员掌握应用。
2 主 要 符 号
本章关于本规范中应用的主要符号,依据下列原则确定:
1 原规范GBJ 69-84 中已经采用,当与《建筑结构术语和符号标准》GB/T 50083-97 的规定无矛盾时,尽量保留;否则按GB/T 50083-97 的规定修改;
2 其他专业技术标准、规范已经采用并颁发的符号,本规范尽量引用;
3 国际上广为采用的符号(如覆土的竖向压力等),本规范尽量引用;
4 原规范GBJ 69-84 中某些符号的角标采用拼音字母,本规范均转换为英文字母。
3 管道结构上的作用
3.1 作用分类和作用代表值
本节内容系依据《工程结构可靠度设计统一标准》GB 50153-92 的规定制订。对作用的分类中,将地表水或地下水的作用列为可变作用,因为地表水或地下水的水位变化较多,不仅每年不同,而且一年内也有丰水期和枯水期之分,对管道结构的作用是变化的。
3.2 永久作用标准值
本节关于永久作用标准值的确定,基本上保持了原规范的规定,仅对不开槽施工时上压力的标准值,改用了国际上通用的太沙基计算模型,其结果与原规范引用原苏联普氏卸力拱模型相差有限,具体说明见附录B。
3.3 可变作用标准值、准永久值系数
本节关于可变作用标准值的确定,基本上保持了原规范的规定,仅对下列各项作了修改和补充:
1 对地表水作用规定了应与水域的水位协调确定,在一般情况下可按设计频率1%的相应水位,确定地表水对管道结构的作用。同时对其准永久值系数的确定作了简化,即当按最高洪水位计算时,可取常年洪水位与最高洪水位的比值,实际上认为1%频率最高洪水位出现的历时很短,计算结构长期作用效应时可不考虑。
2 对地下水作用的确定,条文着重于要考虑其可能变化的情况,不能仅按进行勘探时的地下水位确定地下水作用,因为地下水位不仅在一年内随降水影响变动,
还要受附近水域补给的影响,例如附近河湖水位变化、鱼塘等养殖水场、农田等灌溉等,需要综合考虑这些因素,核定地下水位的变化情况,合理、可靠地确定其对结构的作用。相应的准永久值系数的确定,同样采取了简化的方法,只是考虑到最高水位的历时要比之地表水长,为此给予了适当的提高。
3 关于压力管道在运行过程中出现的真空压力,考虑其历时甚短,因此在计算长期作用效应时,条文规定可以不予计入。
4 对于采用焊接、粘接或熔接连接的埋地或架空管道,其闭合温差相应的准永久值系数的确定,主要考虑了历时的因素。埋地管道的最大闭合温差历时相对长些,从安全计规定了可取1.0;架空管道主要与日照影响有关,为此可取0.5 采用。
4 基本设计规定
4.1 一 般 规 定
4.1.1、4.1.2 条文明确规定本规范的制订系根据《工程结构可靠度设计统一标准》GB 50153-92 及《建筑结构可靠度设计统一标准》GB 50068-2001 规定的原则,采用以概率理论为基础的极限状态设计方法。在具体编制中,考虑到统计数据的掌握不足,主要以工程校准法进行。其中关于管道结构的整体稳定验算,涉及地基土质的物理力学性能,其参数变异更甚,条文规定仍可按单一抗力系数方法进行设计验算。
条文规定管道结构均应按承载能力和正常使用两种极限状态进行设计计算。前者确保管道结构不致发生强度不足而破坏以及结构失稳而丧失承载能力;后者控制管道结构在运行期间的安全可靠和必要的耐久性,其使用寿命符合规定要求。
4.1.3 本条对管道结构的计算分析模型,作了原则规定。
l 对埋地的矩形或拱型管道,当其净宽较大时,管顶覆土等荷载通过侧墙、底板传递到地基,不可能形成均匀分布。如仍按底板下地基均布反力计算时,管道结构内力会出现较大的误差(尤其是底板的内力)。据此条文规定此时分析结构内力应按结构与地基土共同工作的模型进行计算,亦即应按弹性地基上的框(排)架结构分析内力,以使获得较为合理的结果。
本项规定在原规范中,控制管道净宽为4.0m 作为限界,本次修改为3.0m,这是考虑到实际上净宽4.0m 时,底板内力的误差还比较大,为此适当改变了净宽的限界条件。
2 条文对于埋地的圆形管道结构,规定了首先应对该圆管的相对刚度进行判别,即验算圆管的结构刚度与管周土体刚度的比值,以此判别圆管属于刚性管还是柔性管。前者可以不计圆管结构的变形影响;后者则应予考虑圆管结构变形引起管周土体的弹性抗力,两者的结构计算模型完全不同,为此条文要求先行判别确认。
在一般情况下,金属和化学管材的圆管属于柔性管范畴;钢筋混凝土、预应力混凝土和配有加劲肋构造的管材,通常属于刚性管一类。但也有可能当特大口径的圆管,采用非金属的薄壁管材时,也会归入柔性管的范畴。
4.1.4 条文对管、土刚度比值αs 给出了具体计算公式,便于工程技术人员应用。
当管顶作用均布压力p时,如不计管自重则可得管顶的变位为:
4.1.5 本条明确规定了对管道的结构设计,应综合考虑管体、管道的基础做法、管体间的连接构造以及埋地管道的回填土密实度要求。管体的承载能力除了与基础构造密切相关外,管体外的回填土质量同样十分重要,尤其对柔性管更是如此,回填土的弹抗作用有助于提高管体的承载能力,因此对不同刚度的管体应采取不同密实度要求的回填土,柔性管两侧的回填上需要密实度较高的回填土,以提供可靠的弹性抗力;但对不设管座的管体底部,其土基的压实密度却不宜过高,以免减少管底的支承接触面,使管体内力增加,承载能力降低。为此条文要求对回填土的密实度控制,应列入设计内容,各部位的控制要求应根据设计需要加以明确。对这方面的要求,国外相应规范都十分重视,甚至附以详图对管体四周的回填土要求,分区标示具体做法。
4.1.6 本条对管道结构的内力分析,明确应按弹性体系计算,不能考虑非弹性变形后的塑性内力重分布,主要在于管道结构必须保证其良好的水密性以及可靠的使用寿命。
4.1.7 条文针对管道结构的运行条件,从耐久性考虑,规定了需要进行内、外防腐的要求。同时,还对输送饮用水的管道,规定了其内防腐材料必须符合有关卫生标准的要求。这一点是十分重要的,对内防腐材料判定是否符合卫生标准,必须持有省级以上指定的检测部门的正式检测报告,以确保对人体健康无害。
4.2 承载能力极限状态计算规定
4.2.1~4.2.3 条文系根据多系数极限状态的计算模式作了规定。其中关于管道的重要性系数γo,在原规范的基础上作了调整。原规范对地下管道按结构材质的不同,给定了强度设计调整系数,与工程实践不能完全协调,例如某些重要的生命线管道,由于其承受的荷载(主要是内水压力)不大,也可能采用钢筋混凝土结构。为此条文改为以管道的运行功能区分不同的可靠度要求,对排水工程中的雨水管道,保持了原规范的规定;对其他功能的管道适当作了提高,亦即不再降低水准。同时,对给水工程中的输水管道,如果单线敷设,并未设调蓄设施时,从供水水源的重要功能考虑,条文规定了应予提高标准。
4.2.4 本条规定了各种管道材质的强度标准值和设计值的确定依据。其中考虑到20 世纪90 年代以后,国内引进的新颖管材品种繁多,有些管材国内尚未制订相应的技术标准,对此在一般情况下,工程实践应用较为困难,如果有必要使用时,则强度指标由厂方提供(通常依据其企业标准),对此条文要求应具备可靠的技术鉴定证明,由依法指定的检测单位出具。
4.2.5~4.2.7 条文规定了各项作用的分项系数和可变作用的组合系数。
这些系数主要是通过工程校准制定的,与原规范的要求协调一致。其中关于混凝土结构的工程校准,可参阅《给水排水工程构筑物结构设计规范》的相应部分说明。必须指出,对其他材质的管道结构,不一定完全取得协调,对此,应在统一分项系数和组合系数的前提下,各种不同材质的管道结构可根据工程校准的原则,自行制定相应必要的调整系数。
4.2.8~4.2.9 条文对管道结构强度计算的要求,保持了原规范的规定。
4.2.10~4.2.13 条文给出了关于管道结构几种失稳状态的验算规定。基本上保持了原规范的要求,仅就以下几点作了修改和补充。
l 对管道的上浮稳定,关于整个管道破坏,原规范仅要求安全系数1.05,实践中普遍认为偏低,因为无论是地表水或地下水的水位,变异性大,设计中很难精确计算,因此条文给予了适当提高,稳定安全系数应控制在不低于1.10。
2 对柔性管道的环向截面稳定计算,原规范系参照原苏联1958 年制定的《地下钢管设计技术条件和规范》,引用前苏联学者E.A.HигoΛaǔ系考虑了圆管周围360°全部管壁上的正、负土抗力作用。对比国外不少相应的规范则沿用R.V.Mises 获得的明管临界压力公式。
此次条文修改时,感到原规范依据的计算模型考虑管周土的负抗作用,是很值得推敲的,通常都不考虑土的负效应(即承拉作用),为此条文给出了不计管周土负抗作用的计算公式,以使更加符合工程实际情况。应该指出这种计算模型,日本藤田博爱氏于1961 年就曾经推荐应用(日本"水道协会"杂志第318 号)。
根据失稳临界压力计算模型的修改,不计管周土的负抗力作用后,相应的稳定安全系数也作了适当调整,取稳定安全系数不低于2.0.
3 条文补充了对非整体连接管道的抗滑动稳定验算规定。并在计算抗滑阻力时,规定可按被动土压力计算,但此时抗滑安全系数不宜低于1.50,以免产生过大的位移。
4.3 正常使用极限状态计算
4.3.1 本条对管道结构正常使用条件下的极限状态计算内容作了规定,这些要求主要针对管道结构的耐久性,保证其使用年限,提高工程投资效益。
4.3.2 本条对柔性管道的允许变形量作了规定。原规范仅对水泥砂浆内衬作出现定,控制管道的最大竖向变形量不宜超过0.02 。从工程实践来看,此项允许变形量与水泥砂浆的配制及操作成型工艺密切相关,例如手工涂抹和机械成型,其质量差异显著;砂浆配制掺入适量的纤维等增强抗力材料,将改善砂浆的延性性能等。据此,条文对水泥砂浆内衬的允许变形量,规定可以有一定的幅度,供工程技术人员对应采用。
此外,条文还结合近十年来防腐内衬材料的引进和开拓,管材品种的多种开发,增补了对防腐涂料内衬和化学管材的允许变形量的规定,这些规定与国外相应标准的要求基本上协调一致。
4.3.3~4.3.7 条文对钢筋混凝土管道结构的使用阶段截面计算做出了规定,这些要求和原规范的规定是协调一致的。
1 当在组合作用下,截面处于受弯或大偏心受压、拉时,应控制其最大裂缝宽度,不应大于0.2mm,确保结构的耐久性,符合使用年限的要求。同时明确此时可按长期效应的准永久组合作用计算。
2 当在组合作用下,截面处于轴心受拉或小偏心受拉时,应控制截面的裂缝出现,此时一旦形成开裂即将贯通全截面,直接影响管道结构的水密性要求和正常使用,因此相应的作用组合应取短期效应的标准组合作用计算。
4.3.8 本条对柔性管道的变形计算给出了规定,相应的组合作用应取长期效应的准永久组合作用计算。
原规范规定的计算模型系按原苏联1958 年《地下钢管设计技术条件和规范》采用,该计算模型由前苏联学者Л.М.ЕмеΛьянов提出,其理念系依照地下柔性管道的受载程序拟定,即管子在沟槽中安装后,沟槽回填土使管体首先受到侧土压力使柔性管产生变形,向土体方向的变形导致土体的弹性抗力,据此计算管体在竖向、侧向土压力和弹性土抗力作用下管体的变形。
如图4.3.8 所示,当管体上下受到相等的均布压力p时,管体上任一点半径向位移ω为:
按此式可得管顶和管侧的变位置是相同的。当管体仅受到侧向土压力时、亦将产生变形,其方向则与竖向土压作用相反。由于管侧土压力值要小于竖向土压力(例如1/3),因此管体的最终变形还取决于竖向土压力导致的变形形态。
应该认为原规范引用的计算模型在理念上还是清楚的,但与通常的弹性地基上结构的计算模型不相协调,后者的结构上的受力,只需计算结构上受到的组合作用以及由此形成的弹性地基反力,美国spang1er 氏即是按此理念提出了计算模型,获得国际上广为应用,据此条文修改为采用spang1er 计算模型,以使在柔性管的变形计算方法上与国际沟通,协调一致。
另外,在条文给定的计算变形公式中,引入了变形滞后效应系数DL。此项系数取1.0~1.5,主要是管侧土体并非理想的弹性体,在抗力的长期作用下,土体会产生变形或松弛,管侧回填土的压实密度越高,滞后变形效应越显著,粘性土的滞后变形比砂性土历时更长,这一现象已被国内、外工程实践检测所证实(例如国内曾对北京市第九水厂DN2600mm 输水管进行管体变形追踪检测)。显然此项变形滞后系数取值,不仅与埋地管道覆土竣工到投入运行的时间有关,还与管道的运行功能相关,如果是压力运行,内压将使管体变形复圆。因此,对变形滞后系数的取值,对无压或低压管(内压在0.2MPa 以内)应取接近于1.5 的数值;对于压力运行管道,竣工所投入运行的时间较短(例如不超过3 个月),则可取1.0 计算,亦即可以不考虑滞后变形的因素;对压力运行管道,从竣工到运行时间较长时,则可取1.0<DL<1.5 作为设计计算采用值。
4.3.9~4.3.11 有关条文规定可参阅《给水排水构筑物结构设计规范》相应条文的说明。
5 基本构造规定
5.0.1 给水排水工程中,各种材质的圆形管道广泛应用,这些管道形成的城市生命线管网涉及面广,沿线地质情况差异难免,埋深及覆土也多变,可能出现的不均匀沉陷不可避免。据此条文规定这些圆管的接口,宜采用柔性连接,以适应各种不同因素产生的不均匀沉陷,并至少应该在地基土质变化处设置柔口。此外,敷设在地震区的管道,则应根据抗震规范要求,沿线设置必要数量的柔性连接,以适应地震行波对管道引起的变位。
5.0.2 本条对现浇矩形钢筋混凝土管道(含混合结构中的现浇钢筋混凝土构件)的变形缝间距做出了规定,主要是考虑混凝土浇筑成型过程中的水化热影响。同时指出,如果当混凝土配制及养护方面具备相应的技术措施,例如掺加适量的微膨胀性能外加剂等,变形缝的间距可适当加长,但以不超过一倍(即50m)为好。
5.0.3 本条对预应力混凝土圆管的纵向预加应力,规定不宜低于环向有效预压应力的20%。主要考虑环向预压应力所引起的泊桑效应,如果管体纵向不施加相应的预加应力,管体纵向强度将降低,还不如普通钢筋混凝土强度,这对管体受力很不利,容易引发出现环向开裂,影响运行时的水密性要求及使用寿命。
5.0.4 本条对现浇钢筋混凝土结构的钢筋净保护层最小厚度作了规定。主要依据管道各部位构件的环境条件确定。例如对污水和合流管道的内侧钢筋,其保护层厚度作了适当增加,尤其是顶板下层筋的保护层厚度,考虑硫化氢气体的腐蚀更甚于接触污水本身。从耐久性考虑,国外对钢筋保护层厚度都取值较大,一般均采用1英寸,条文基于原规范的取值,尽量避免过多增加工程投资,仅对污水、合流管的顶板下层筋保护层厚度,调整到接近国际上的通用水准。
5.0.5 条文对厂制的钢筋混凝土或预应力混凝土圆管的钢筋净保护层厚度的规定,主要考虑这些圆管的混凝土等级较高,一般都在C30 以上,并且其制管成型工艺(离心、悬辊、芯模振动及高压喷射砂浆保护层等),对混凝土的密实性和砂浆的粘结性能较好;同时这些规定也与相应的产品标准可以取得协调。
5.0.6~5.0.16 条文的规定基本上保持了原规范的要求,仅作了如下补充与修改。
1 关于结构材质抗冻性能的要求,原规范以最冷月平均气温低于(-5℃)作为地区划分界限,实践证明此界限温度取值偏低,并与水工结构方面的规范协调一致,修改为以(-3℃)作界限指标,适当提高了抗冻要求。
2 增加了对混凝上中含碱量的限值控制,以确保结构的耐久性,符合使用年限要求。近十多年来国内多起发现碱集料反应对混凝土构件的损坏(国外20世纪40年代就己提出),严重影响了结构的使用寿命。这种事故主要是混凝土中的碱含量与砂、石等集料中的碱活性矿物,在混凝土凝固后缓慢发生化学反应,产生胶凝物质,吸收水分后产生膨胀,导致混凝土损坏。据此条文作了规定,应符合《混凝土碱含量标准》CECS3-93 的要求。
3 条文对埋地管道各部位, 的回填土密实度要求,在原规范规定的基础上,作了进一步具体化,可方便工程技术人员应用,提高对管道结构的设计可靠度。
5 基本构造规定
5.0.1 给水排水工程中,各种材质的圆形管道广泛应用,这些管道形成的城市生命线管网涉及面广,沿线地质情况差异难免,埋深及覆土也多变,可能出现的不均匀沉陷不可避免。据此条文规定这些圆管的接口,宜采用柔性连接,以适应各种不同因素产生的不均匀沉陷,并至少应该在地基土质变化处设置柔口。此外,敷设在地震区的管道,则应根据抗震规范要求,沿线设置必要数量的柔性连接,以适应地震行波对管道引起的变位。
5.0.2 本条对现浇矩形钢筋混凝土管道(含混合结构中的现浇钢筋混凝土构件)的变形缝间距做出了规定,主要是考虑混凝土浇筑成型过程中的水化热影响。同时指出,如果当混凝土配制及养护方面具备相应的技术措施,例如掺加适量的微膨胀性能外加剂等,变形缝的间距可适当加长,但以不超过一倍(即50m)为好。
5.0.3 本条对预应力混凝土圆管的纵向预加应力,规定不宜低于环向有效预压应力的20%。主要考虑环向预压应力所引起的泊桑效应,如果管体纵向不施加相应的预加应力,管体纵向强度将降低,还不如普通钢筋混凝土强度,这对管体受力很不利,容易引发出现环向开裂,影响运行时的水密性要求及使用寿命。
5.0.4 本条对现浇钢筋混凝土结构的钢筋净保护层最小厚度作了规定。主要依据管道各部位构件的环境条件确定。例如对污水和合流管道的内侧钢筋,其保护层厚度作了适当增加,尤其是顶板下层筋的保护层厚度,考虑硫化氢气体的腐蚀更甚于接触污水本身。从耐久性考虑,国外对钢筋保护层厚度都取值较大,一般均采用1英寸,条文基于原规范的取值,尽量避免过多增加工程投资,仅对污水、合流管的顶板下层筋保护层厚度,调整到接近国际上的通用水准。
5.0.5 条文对厂制的钢筋混凝土或预应力混凝土圆管的钢筋净保护层厚度的规定,主要考虑这些圆管的混凝土等级较高,一般都在C30 以上,并且其制管成型工艺(离心、悬辊、芯模振动及高压喷射砂浆保护层等),对混凝土的密实性和砂浆的粘结性能较好;同时这些规定也与相应的产品标准可以取得协调。
5.0.6~5.0.16 条文的规定基本上保持了原规范的要求,仅作了如下补充与修改。
1 关于结构材质抗冻性能的要求,原规范以最冷月平均气温低于(-5℃)作为地区划分界限,实践证明此界限温度取值偏低,并与水工结构方面的规范协调一致,修改为以(-3℃)作界限指标,适当提高了抗冻要求。
2 增加了对混凝上中含碱量的限值控制,以确保结构的耐久性,符合使用年限要求。近十多年来国内多起发现碱集料反应对混凝土构件的损坏(国外20世纪40年代就己提出),严重影响了结构的使用寿命。这种事故主要是混凝土中的碱含量与砂、石等集料中的碱活性矿物,在混凝土凝固后缓慢发生化学反应,产生胶凝物质,吸收水分后产生膨胀,导致混凝土损坏。据此条文作了规定,应符合《混凝土碱含量标准》CECS3-93 的要求。
3 条文对埋地管道各部位的回填土密实度要求,在原规范规定的基础上,作了进一步具体化,可方便工程技术人员应用,提高对管道结构的设计可靠度。
附录A 管侧土的综合变形模量
关于本附录的内容说明如下:
1 在柔性管道的计算中,需要应用管侧土的变形模量,原规范对此仅考虑了管侧回填土的密实度,以此确定相应的变形模量。实际上管侧土的抗力还会受到槽帮原状土土质的影响,国外相应的规范内(例如澳大利亚和美国的水道协会)已计入了这一因素,在计算中采用了考虑原状土性能后的综合变形模量。
2 本规范认为以综合变形模量替代以往采用的回填土变形模量是合理的,因此在本附录中引入并规定采用。
3 本附录在引入国外计算模式的基础上,进行了归整与简化,给出了实用计算参数,便于工程实践应用。
附录B 管顶竖向土压力标准值的确定
本附录内容基本上保持了原规范的规定,仅就以下两个方面作了修改:
1 针对当前城市建设的飞速发展,立交桥的建设得到广泛应用。随之出现不少管道上的设计地面标高远高于原状地面,此时管道承受的覆土压力,已非开槽沟埋式条件,有时甚至接近完全上埋式情况。据此,本附录补充了相应计算要求,规定对覆土压力系数的取值应适当提高,一般可取1.40。
2 对不开槽施工管道的管顶竖向压力,原规范采用原苏联学者М.М.Прототиякунов的计算模型,在一定的覆土高度条件下,管顶土层将形成"卸力拱",管顶承受的竖向土压力将取决于卸力土拱的高度,目前国际上通用的计算模型系由美国学者太沙基提出,该模型的理念认为管体的受力条件类似于"沟埋式"敷管,管顶覆土的变形大于两侧土体的变形,管顶土体重量将通过剪力传递扩散给管两侧土体,据此即可获得本附录给出的计算公式:
本附录根据以上分析对比,并考虑与国际接轨,方便工程技术人员与国外标准规范沟通,对不开槽施工管道的管顶竖向土压力计算,采用太沙基计算模型替代卸力拱计算模型。
附录C 地面车辆荷载对管道上的作用标准值的计算方法
本附录的内容保持原规范的各项规定。仅对整体式结构的刚性管道(一般指钢筋混凝土或预应力混凝土管道),附录规定了由车辆荷载作用在管道上的竖向压力,可通过结构的整体性,从管顶沿结构进行再扩散,使扩散范围内的管道结构共同来承担地面车辆荷载的作用,充分体现结构的整体作用。
附录D 钢筋混凝土矩形截面处于受弯或大偏心受拉(压)状态时的最大裂缝宽度计算
本附录内容基础上保持了原规范的规定,其计算公式的转换推导过程,可参阅《给水排水工程构筑物结构设计规范》的相应说明。