中华人民共和国国家标准人民防空地下室设计规范GB 50038-2005条文说明 3
4.5.7 作用在结构底板上的核武器爆炸动荷载主要是结构受到顶板动荷载后往下运动从而使地基产生的反力,即结构底部压力由地基反力构成。根据近年来对土中一维压缩波与结构相互作用理论及有限元法分析研究结果,地下水位以上的结构底板底压系数为0.7~0.8;地下水位以下的结构底板底压系数为0.8~1.0。
4.5.8 作用在防空地下室出入口通道内临空墙、门框墙上的最大压力值,是按下述考虑确定的。
对顶板荷载考虑上部建筑影响的室内出入口,其需符合的具体条件及入射冲击波参数均按本规范第4.4.4~4.4.6条规定确定。根据试验,当入射超压相当于核5级左右时,有升压时间的冲击波反射超压不会大于入射超压的二倍。因此,本条取反射系数值等于2。
对室外竖井、楼梯、穿廊出入口以及顶板荷载不考虑上部建筑影响的室内出入口,其内部临空墙、门框墙的最大压力值均按1.98△Pm(近似取2.0△Pm)计算确定。
对量大面广的核5级、核6和核6B级防空地下室,其室外直通、单向出入口按出人口坡道坡度分为ζ<30°及ζ≥30°两种情况分别确定临空墙最大压力,其中ζ<30°时按正反射公式计算确定,ζ≥30°时按激波管试验及有关公式计算后综合分析确定。对核4级和核4B级的防空地下室,按有一定夹角的有关公式计算确定。
4.5.9 室内出入口在遭受核袭击时,如何防止被上部建筑的倒塌物及邻近建筑的飞散物所堵塞是个很难解决的问题,故在本规范中规定,防空地下室一般以室外出入口作为战时使用的主要出入口。为此,如再考虑将室内出入口内与防空地下室无关的墙或楼梯进行防护加固,不仅加固范围难以确定,而且亦难以保证其不被堵塞,故无实际意义。所以本条规定,对于与防空地下室无关的部位不考虑核武器爆炸动荷载作用。
4.5.10 在核武器爆炸动荷载作用下,室外出入口通道结构既受土中压缩波外压,又受自口部直接进入的冲击波内压,由于二者作用时间不同,很难综合考虑。结合试验成果,本条在保证出入口不致倒塌(一般允许出现裂缝)的前提下,规定出入口结构的封闭段(有顶盖段)及竖井结构仅按外压考虑。这是因为虽然内压一般大于外压,但在内压作用下土中通道结构通常只出现裂缝,不致向通道内侧倒塌而使通道堵塞。对于无顶盖的敞开段通道,试验表明,仅按外部土压和地面堆积物超载设计的结构在核武器爆炸动荷载作用下,没有出现破坏堵塞的情况。因此本条规定敞开段通道不考虑核武器爆炸动荷载作用。
4.5.11 与土直接接触的扩散室顶板、外墙及底板与有顶盖的通道结构类似,既受土中压缩波外压,又受自消波系统口部进入的冲击波余压(内压)作用。由于外压和内压作用时间不同,且在内压作用下土中结构通常只出现裂缝,不致向内侧倒塌,故与土直接接触的扩散室顶板、外墙及底板只按承受外压作用考虑。
4.6 结构动力计算
4.6.1 等效静荷载法一般适用于单个构件。然而,防空地下室结构是个多构件体系,如有顶、底板、墙、梁、柱等构件,其中顶、底板与外墙直接受到不同峰值的外加动荷载,内墙、柱、梁等承受上部构件传来的动荷载。由于动荷载作用的时间有先后,动荷载的变化规律也不一致,因此对结构体系进行综合的精确分析是较为困难的,故一般均采用近似方法,将它拆成单个构件,每一个构件都按单独的等效体系进行动力分析。各构件之间支座条件应按近于实际支承情况来选取。例如对钢筋混凝土结构,顶板与外墙之间二者刚度相接近,可近似按固端与铰支之间的支座情况考虑。在底板与外墙之间,由于二者刚度相差较大,在计算外墙时可视作固定端。
对通道或其它简单、规则的结构,也可近似作为一个整体构件按等效静荷载法进行动力计算。
4.6.2 结构构件的允许延性比[β],系指构件允许出现的最大变位与弹性极限变位的比值。显然,当[β]≤1时,结构处于弹性工作阶段;当[β]>1时,构件处于弹塑性工作阶段。因此允许延性比虽然不完全反映结构构件的强度、挠度及裂缝等情况,但与这三者都有密切的关系,且能直接表明结构构件所处极限状态。根据试验资料,用允许延性比表示结构构件的工作状态,既简单适用,又比较合理,故本次规范修订时仍沿用按允许延性比表示结构构件工作状态。
结构构件的允许延性比,主要与结构构件的材料、受力特征及使用要求有关。如结构构件具有较大的允许延性比,则能较多地吸收动能,对于抵抗动荷载是十分有利的。本条确定在核武器爆炸动荷载作用下结构构件允许延性比[β]值时,主要参考了以下资料:
由于防空地下室不考虑常规武器的直接命中,只按防非直接命中的地面爆炸作用设计,常规武器爆炸动荷载对结构构件往往只产生局部作用;又由于常规武器爆炸动荷载作用时间较短(相对于核武器爆炸动荷载),易使结构构件产生变形回弹,故本条规定在常规武器爆炸动荷载作用下,结构构件允许延性比可比核武器爆炸作用时取的大一些,以充分发挥结构材料的塑性性能,更多地吸收爆炸能量。
4.6.5 本条给出的动力系数计算公式是将结构构件简化为等效单自由度体系,进行无阻尼弹塑性体系强迫振动的动力分析得出的。
当核武器爆炸动荷载波形为无升压时间的三角形时,由于其有效正压作用时间远大于结构构件达到最大变位的时间,因此其等效作用时间可进一步近似取为无穷大,即可看成突加平台形荷载。在突加平台形荷载作用下,动力系数仅与结构构件允许延性比有关,而与结构的其它特性无关。
4.6.6 按等效单自由度体系进行结构动力分析时,较为重要的问题是正确选择振型。在强迫振动下哪一种主振型占主要成分与动载的分布形式有很大关系,一般来说与以动载作为静载作用时的挠曲线相接近的主振型起着主导作用,因此宜取将动载视作静载所产生的静挠曲线形状作为基本振型。通常即使振动形状稍有差别,对动力分析结果并不会产生明显影响。为了简化计算,也可挑选一个与静挠曲线形状相近的主振型作为假定基本振型,如对均布荷载下简支梁可取第一振型,对三跨等跨连续梁可取第三振型。
由于本规范在动荷载确定中已考虑了土与结构的相互作用影响,所以在计算土中结构自振频率时,不再考虑覆土附加质量的影响。
4.6.7 作用在结构底板上的动荷载主要是结构受到顶板动荷载后往下运动使地基产生的反力。由于底板动荷载升压时间较长,故其动力系数可取1.0。
扩散室与防空地下室内部房间相邻的临空墙只承受消波系统的余压作用,临空墙的允许延性比取1.5,按公式(4.6.5-4)计算动力系数为1.5。考虑到扩散室的扩散作用,动力效应降低,动力系数乘以0.85的折减系数后取1.3。
4.7 常规武器爆炸动荷载作用下结构等效静荷载
4.7.2 对于防空地下室顶板的等效静荷载标准值:
本条第1款及表4.7.2计算采用的有关条件为:顶板材料为钢筋混凝土,混凝土强度等级为C25;按弹塑性工作阶段计算,允许延性比[β]取4.0;顶板四边按固支考虑;板厚对常6级取200~300mm,对常5级取250~400mm;板短边净跨取4~5m。括号内的数值是根据本规范第4.3.4条的规定,考虑上部建筑影响乘以0.8的折减系数后得到的。
常规武器地面爆炸时,防空地下室顶板主要承受空气冲击波感生的地冲击作用。一般来说,距常规武器爆心越远,顶板上受到的动荷载越小。另外,结构顶板区格跨度不同时,其等效静荷载值也不一样。为便于设计,本规范对同一覆土厚度不同区格跨度顶板的等效静荷载取单一数值。
相关试验和数值模拟研究表明:常规武器爆炸空气冲击波在松散软土等非饱和土中传播时衰减非常快。根据本规范附录B的公式计算可以确定:当防空地下室顶板覆土厚度对于常5级、常6级分别大于2.5m、1.5m时,动荷载值相对较小,顶板设计通常由平时荷载效应组合控制,故此时顶板可不计入常规武器地面爆炸产生的等效静荷载。
当防空地下室设在地下二层及以下各层时,根据本条第1款的规定以及常规武器爆炸空气冲击波衰减快的特点,经综合分析,此时作用在防空地下室顶板上的常规武器地面爆炸产生的等效静荷载值很小,可忽略不计。
4.7.3 对于防空地下室外墙的等效静荷载标准值:
常规武器地面爆炸时,防空地下室土中外墙主要承受直接地冲击作用。表4.7.3计算中采用的有关条件如下:
砌体外墙:采用砖砌体,净高按2.6~3m,墙体厚度取490mm,允许延性比[β]取1.0。
钢筋混凝土外墙:考虑单向受力与双向受力二种情况;净高按h≤5.Om;墙厚对常6级取250~350mm,对常5级取300~400mm;混凝土强度等级取C25~C40;按弹塑性工作阶段计算,允许延性比[β]取3.0。
当常6级、常5级防空地下室顶板底面高出室外地面时,高出地面的外墙承受常规武器爆炸空气冲击波的直接作用。此时外墙按弹塑性工作阶段计算,允许延性比[β]取3.0。
4.7.4 作用到结构底板上的常规武器爆炸动荷载主要是结构顶板受到动荷载后向下运动所产生的地基反力。在常规武器非直接命中地面爆炸产生的压缩波作用下,防空地下室顶板的受爆区域通常是局部的,因此作用到防空地下室底板上的均布动荷载较小。对于常5级、常6级防空地下室,底板设计多不由常规武器爆炸动荷载作用组合控制,可不计入常规武器地面爆炸产生的等效静荷载。
4.7.5 常规武器地面爆炸直接作用在门框墙上的等效静荷载是由作用在其上的动荷载峰值乘以相应的动力系数后得出的。这里的动力系数按允许延性比[β]等于2.0计算确定。这是由于常规武器爆炸动荷载与核武器爆炸动荷载相比,其作用时间要短得多,结构构件在常规武器爆炸动荷载作用下的允许延性比可取的大一些。
直接作用在门框墙上的动荷载主要是根据现行《国防工程设计规范》中有关公式计算确定的。该组公式是依据现场化爆试验、室内击波管试验,并结合理论分析提出的。其考虑因素比较全面,如考虑了冲击波传播方向与通道轴线的夹角、坡道的坡度角、通道拐弯、通道长度以及通道截面尺寸等因素的影响。相对于核武器爆炸空气冲击波,常规武器爆炸产生的空气冲击波在通道中传播时衰减较快。无论是直通式,还是单向式,通道截面尺寸越大,防护密闭门前距离越长,作用在防护密闭门上的动荷载越小。
根据防空地下室室外出入口的特点,出人口通道等效直径往往难以确定,以致于无法按公式计算荷载,此时以出入口宽度来区分通道大小比较符合实际情况。一般车道宽度不小于3.Om,因此,以出入口宽度等于3.Om为分界线划分大小两种通道。根据上述公式可计算出直通式、单向式及竖井、楼梯、穿廊式出入口不同通道宽度、不同距离处门框墙上的等效静荷载标准值。直通式、单向式出入口按坡道坡度ζ分为ζ<30°及ζ≥30°两种情况计算,其中ζ≥30°时按夹角等于30°的有关公式计算,ζ<30°时按夹角等于0°的有关公式计算,竖井、楼梯、穿廊式出入口按夹角等于90°的有关公式计算。
表4.7.5-2、表4.7.5-3给出的单扇及双扇平板门反力系数,是门扇按双向平板受力模型经计算得出。由于钢结构门扇是由门扇中的肋梁将作用在门扇上的荷载传递到门框墙上,门扇受力模型明显不同于双向平板,其中钢结构双扇门近似于单向受力,若按本条公式进行门框墙设计偏于不安全。
4.7.6 常规武器爆炸作用到室外出入口临空墙上的等效静荷载标准值按弹塑性工作阶段计算,允许延性比[β]别取3.0,计算方法参照门框墙荷载。
4.7.7 常规武器爆炸空气冲击波在传播过程中衰减较快,而室内出入口距爆心的距离相对较远,作用到室内出入口内临空墙、门框墙上的动荷载往往较小。室内出入口距外墙的距离以5.Om为界,是参照本规范第3.3.2条的规定确定的。距外墙的距离不大于5.Om的室内出入口可用作战时主要出入口,作用到出入口内临空墙、门框墙上的等效静荷载标准值经按现行《国防工程设计规范》中夹角等于90°的有关公式计算,且考虑上部建筑影响后得出。
4.7.10 为便于设计计算,本条在确定楼梯间休息平台和楼梯踏步板的等效静荷载时作了如下简化:楼梯休息平台和楼梯踏步板上等效静荷载取值相同,上下梯段取值相同,允许延性比[β]取3.0。
4.8 核武器爆炸动荷载作用下常用结构等效静荷载
4.8.2 表4.8.2计算中采用的有关条件如下:
4.8.3 表4.8.3计算中采用的有关条件如下:
4.8.4 高出地面的外墙承受空气冲击波的直接作用,当按弹塑性工作阶段设计时[β]取2.0,由式(4.6.5-4)可得动力系数Kd=1.33。
4.8.5 由于本规范第4.8.15条中已给出带桩基的防空地下室底板的等效静荷载值,故在条文中阐明,在确定防空地下室底板等效静荷载值时,应分清二类不同情况。
表中增加注2,是为了进一步明确无桩基的核5级防空地下室底板荷载的取值。
4.8.6 本条主要是明确防空地下室室外有顶盖的土中通道结构周边等效静荷载取值方法。当通道净跨小于3m时,由于不能直接套用主体结构顶、底板等效静荷载值,为方便使用,对核5级、核6级和核6B级防空地下室,给出表4.8.6-1及表4.8.6-2。表中数值的计算条件为:顶、底板厚250mm,混凝土强度等级C30。
4.8.7 表4.8.7与本规范表4.5.8相对应,由表4.5.8中动荷载值乘以相应的动力系数得出。本条第2款仅适用于钢筋混凝土平板防护密闭门,其理由同本规范第4.7.5条。
4.8.8 出入口临空墙上的等效静荷载标准值,是由作用在其上的最大压力值(见表4.5.8)乘以相应的动力系数后得出。动力系数按下述考虑确定:对核5级、核6级和核6B级防空地下室,其顶板荷载考虑上部建筑影响的室内出入口,超压波形按有升压时间的平台形,升压时间为0.025s,临空墙自振频率一般不小于200s-1。对其它出入口,超压波形均按无升压时间波形考虑。
4.8.9 相邻防护单元之间隔墙上荷载的确定,是个比较复杂的问题。当相邻两个单元抗力级别相同时,应考虑某一单元遭受常规武器破坏后,爆炸气浪、弹片及其它飞散物不会波及相邻单元;当相邻两单元抗力级别不同时,还应考虑当低抗力级别防护单元遭受核袭击被破坏时,核武器爆炸冲击波余压对与其相邻的防护单元的影响。
本条取相应冲击波地面超压值作为作用在隔墙(含门框墙)上的等效静荷载值。当相邻两防护单元抗力级别相同时,取地面超压值作为作用在隔墙两侧的等效静荷载标准值;当相邻两防护单元抗力级别不相同时,高抗力级别一侧隔墙取低抗力级别的地面超压值作为等效静荷载标准值;低抗力级别一侧隔墙取高抗力级别的地面超压值作为等效静荷载标准值。
当防空地下室与普通地下室相邻时,冲击波将从普通地下室的楼梯间或窗孔处直接进入,考虑到普通地下室空间较大,冲击波进入后会有一定扩散作用,因此作用在防空地下室与普通地下室相邻隔墙上荷载值会小于室内出入口通道内临空墙上荷载值,本条按减少15%计入,并按此确定作用在毗邻普通地下室一侧隔墙上和门框墙上的等效静荷载值。
4.8.10 防空地下室室外开敞式防倒塌棚架,一般由现浇顶板、顶板梁、钢筋混凝土柱和非承重的脆性围护构件组成。在地面冲击波作用下,围护结构迅速遭受破坏被摧毁,仅剩下开敞式的承重结构。由于开敞式结构的梁、柱截面较小,因此在冲击波荷载作用下可按仅承受水平动压作用。
根据核5级防倒塌棚架试验,矩形截面形状系数可取1.5。又棚架梁、柱可按弹塑性工作阶段设计,允许延性比[β]取3.0可得Kd=1.2,根据表4.4.1中动压值可得表4.8.10中水平等效静荷载标准值。
4.8.11 本条主要参照工程兵三所对二层室外楼梯间按核5级人防荷载所作核武器爆炸动荷载模拟试验的总结报告编写。试验表明,无论对中间有支撑墙的封闭式楼梯间或中间无支撑墙的开敞式楼梯间,在楼梯休息平台或踏步板正面受冲击波荷载后,经过几毫秒时间冲击波就绕射到反面,使平台板或踏步板同时受到二个方向相反的动荷载,因而可用正面荷载与反面荷载的差,即净荷载来确定作用在构件上的动荷载值。在冲击波作用初期,由于冲击波和端墙相撞产生反射,使冲击波增强,因而使平台板和踏步板正面峰值压力增大,而在其反面,由于冲击波绕射和空间扩散作用,冲击波减弱,峰值压力减小,升压时间增长,因此在冲击波作用初期平台板和踏步板正面压力大于反面压力,即净荷载值方向向下。而在冲击波作用后期,由于正面压力衰减较快,使反面压力大于正面压力,即净荷载值方向向上,所以对楼梯休息平台和踏步板应按正面与反面不同时受荷分别计算。
依据上述试验资料,为便于设计计算,本条在确定楼梯休息平台和楼梯踏步板的等效静荷载时作了如下简化:楼梯休息平台和楼梯踏步板上等效静荷载取值相同;上层楼梯间与下层楼梯间取值相同;构件反面的核武器爆炸动荷载净反射系数取正面净反射系数的一半。构件正面净反射系数按略小于实测数据算术平均值采用,实测平均值为1.26,本条取值为1.2。考虑到楼梯休息平台与踏步板为非主要受力构件,动力系数可取1.05。由此可得出表中等效静荷载标准值。
4.8.12 对多层地下室结构,当防空地下室未设在最下层时,若在临战时不对防空地下室以下各层采取封堵加固措施,确保空气冲击波不进入以下各层,则防空地下室底板及防空地下室以下各层中间墙柱都要考虑核武器爆炸动荷载作用,这样不仅使计算复杂,也不经济,故不宜采用。
4.8.13 根据总参工程兵三所对二层室外多跑式楼梯间核武器爆炸模拟试验,在第二层地面处反射压力比一般竖井内反射压力约小13%。本条根据上述实测资料,取整给出相应部位荷载折减系数。
4.8.14 当相邻楼层划分为上、下两个防护单元时,上、下二层间楼板起了防护单元间隔墙的作用,故该楼板上荷载应按防护单元间隔墙上荷载取值。此时,若下层防护单元结构遭到破坏,上层防护单元也不能使用,故只计入作用在楼板上表面的等效静荷载标准值。
4.8.15 从静力荷载作用下桩基础的实测资料中可知,由于打桩后土体往往产生较大的固结压缩量,以致在平时荷载作用下,虽然建筑物有较大的沉降,但有的建筑物底板仍与土体相脱离。由于桩是基础的主要受力构件,为确保结构安全,在防空地下室结构设计中,不论何种情况桩本身都应按计入上部墙、柱传来的核武器爆炸动荷载的荷载效应组合值来验算构件的强度。
在非饱和土中,当平时按端承桩设计时,由于岩土的动力强度提高系数大于材料动力强度提高系数,只要桩本身能满足强度要求,桩端不会发生刺入变形,即仍可按端承桩考虑,所以防空地下室底板可不计入等效静荷载值。在非饱和土中,当平时按非端承桩设计时,在核武器爆炸动荷载作用下,防空地下室底板应按带桩基的地基反力确定等效静荷载值。静力实验与研究表明,在非饱和土中,当按单桩承载力特征值设计时,只要桩所承受的荷载值不超过其极限荷载时,承台(包括筏与基础)分担的荷载比例将会稳定在一定数值上,一般在非饱和土中约占20%,在饱和土中可达30%。本条在非饱和土中,底板荷载近似按20%顶板等效静荷载取值。
在饱和土中,当核武器爆炸动荷载产生的地基反力全部或绝大部分由桩来承担时,还应计入压缩波从侧面绕射到底板上荷载值。若底板不计入这一绕射的荷载值,则会引起底板破坏,造成渗漏水,影响防空地下室的使用。虽然确定压缩波从侧面绕射到底板上荷载值,目前还缺乏准确试验数据,但考虑到压缩波的侧压力基本上取决冲击波地面超压值与侧压系数相乘积,而绕射到底板上压力可以看成由侧压力产生的侧压力,因此对压缩波绕射到底板上的压力可以在原侧压力基础上再乘一侧压系数来取值,即可按冲击波地面超压值乘上侧压系数平方得出。本条对核5级、核6级和核6B级防空地下室饱和土中侧压系数平方取值为0.5,由此可得条文中数值。
为抵抗水浮力设置的抗拔桩不属于基础受力构件,其底板等效静荷载标准值应按无桩基底板取值。
4.8.16 在饱和土中,核武器爆炸动荷载产生的土中压缩波从侧面绕射到防水底板上,在板底产生向上的荷载值。该荷载值可看成由侧压力产生的侧压力,即可按冲击波地面超压值乘上侧压系数平方得出。
4.8.17 对核6级和核6B级防空地下室,当按本规范第3.3.2条规定将某一室内出入口用做室外出入口时,应加强防空地下室室内出入口楼梯间的防护以确保战时通行。
对防空地下室到首层地面的休息平台和踏步板,其所处的位置与本规范第4.8.11条多跑式室外出入口楼梯间相同,由于此时净反射系数是按平均值取用,故此处不再区分顶板荷载是否考虑上部建筑影响,统一按本规范第4.8.11条规定取值。
防倒塌挑檐上表面等效静荷载按倒塌荷载取值,下表面等效静荷载按动压作用取值。
4.9 荷载组合
4.9.2 不同于核武器爆炸冲击波,常规武器地面爆炸产生的空气冲击波为非平面一维波,且随着距爆心距离的加大,峰值压力迅速减小,对地面建筑物仅产生局部作用,不致造成建筑物的整体倒塌。在确定战时常规武器与静荷载同时作用的荷载组合时,可按上部建筑物不倒塌考虑。
在常规武器非直接命中地面爆炸产生的压缩波作用下,对于常5级、常6级防空地下室,底板设计一般不由常规武器与静荷载同时作用组合控制,防空地下室底板设计计算可不计入常规武器地面爆炸产生的等效静荷载。
4.9.3 对于战时核武器与静荷载同时作用的荷载组合,主要是解决在核武器爆炸动荷载作用下如何确定同时存在的静荷载的问题。防空地下室结构自重及土压力、水压力等均可取实际作用值,因此较容易确定。由于各种不同结构类型的上部建筑物在给定的核武器爆炸地面冲击波超压作用下有的倒塌,有的可能局部倒塌,有的可能不倒塌,反应不尽一致,因此在荷载组合中,主要的困难是如何确定上部建筑物自重。
在核武器爆炸动荷载作用下,本条以上部建筑物倒塌时间tw与防空地下室结构构件达到最大变位时间tm之间的相对关系来确定作用在防空地下室结构构件上的上部建筑物自重值。当tw>tm时,计入整个上部建筑物自重;tw<tm时,不计入上部建筑物自重;tm与tw相接近时,计入上部建筑物自重的一半。当上部建筑为砖混结构时,试验表明,核6级和核6B级时,tw>tm;核5级时,tm与tw接近,故本条规定前者取整个自重,后者取自重的一半;核4级和核4B级时,不计入上部建筑物自重。由于对框架和剪力墙结构倒塌情况缺乏具体试验数据,本条在取值时作了近似考虑。据国外资料,当框架结构的填充墙与框架密贴时,300mm厚墙体可抵抗0.08N/mm2的超压;周边有空隙时,其抗力将下降到0.03N/mm2左右,而框架主体结构要到超压相当于核4B级左右才倒塌。从偏于安全考虑,本条在外墙荷载组合中规定:当核5级时取上部建筑物自重之半;核4级和核4B级时不计入上部建筑物自重,即对大偏压构件轴力取偏小值。在内墙及基础荷载组合中,核5级时取上部建筑物自重;核4B级时取上部建筑物自重之半;核4级时不计入上部建筑物自重,即在轴心受压或小偏压构件中轴力取偏大值。当外墙为钢筋混凝土承重墙时,根据国外资料,一般在超压相当于核4B级以上时方才倒塌,考虑到结构破坏后可能仍留在原处,因此荷载组合中取其全部自重。
4.9.4 本条是为了明确在甲类防空地下室底板荷载组合中是否应计入水压力的问题。由于核武器爆炸动荷载作用下防空地下室结构整体位移较大,为保证战时正常使用,对地下水位以下无桩基的防空地下室基础应采用箱基或筏基,使整块底板共同受力,因此上部建筑物自重是通过整块底板传给地基的。对上部为多层建筑的防空地下室而言,其计算自重一般都大于水浮力。由于在底板的荷载计算中,建筑物计入浮力所减少的荷载值与计入水压力所增加的荷载值可以相互抵消,因此提出当地基反力按不计入浮力确定时,底板荷载组合中可不计入水压力。
对地下水位以下带桩基的防空地下室,根据静力荷载作用下实测资料,上部建筑物自重全部或大部分由桩来承担,底板不承受或只承受一小部分反力,此时水浮力主要起到减轻桩所承担的荷载值作用,对减少底板承受的荷载值没有影响或影响较小,即对桩基底板而言水压力显然大于所受到的浮力,二者作用不可相互抵消。因此在地下水位以下,为确保安全,不论在计算建筑物自重时是否计入了水浮力,在带桩基的防空地下室底板荷载组合中均应计入水压力。
4.10 内力分析和截面设计
4.10.2 根据现行的《建筑结构可靠度设计统一标准》(GB50068)的要求,结构设计采用可靠度理论为基础的概率极限状态设计方法,结构可靠度用可靠指标β度量,采用以分项系数表达的设计表达式进行设计。本条所列公式就是根据该标准并考虑了人防工程结构的特点提出的。
为提高本规范的标准化、统一化水平,从方便设计人员使用出发,本规范中的永久荷载分项系数、材料设计强度(不包括材料强度综合调整系数),均与相关规范取值一致。因为在防空地下室设计中,结构的重要性已完全体现在抗力级别上,故将结构重要性系数γ0取为1.0。
取等效静荷载的分项系数γQ=1.0,其理由:
1 常规武器爆炸动荷载与核武器爆炸动荷载是结构设计基准期内的偶然荷载,根据《建筑结构可靠度设计统一标准》(GB50068)中第7.0.2条规定:偶然作用的代表值不乘以分项系数,即γQ=1.0;
2 由于人防工程设计的结构构件可靠度水准比普通工业与民用建筑规范规定的低得多,故γQ值不宜大于1.0;
3 等效静荷载分项系数不宜小于1.0,它虽然是偶然荷载,但也是防护结构构件设计的重要荷载;
4 等效静荷载是设计中的规定值,不是随机变量的统计值,目前也无可能按统计样本来进行分析,因此按国家规定取值即可,不必规定一个设计值,再去乘以其它系数。
确定上述数值与系数后,按修订规范的可靠指标与原规范反算所得的可靠指标应基本吻合的原则,定出各种材料强度综合调整系数。
按修订规范设计的防空地下室结构,钢筋混凝土延性构件的可靠指标约1.55,其失效概率为6.1%;脆性构件的可靠指标约2.40,其失效概率为0.8%;砌体构件的可靠指标约2.58,其失效概率为0.5%。
4.10.3 当受拉钢筋配筋率大于1.5%时,按式(4.10.3-1)及式(4.10.3-2)的规定,只要增加受压钢筋的配筋率,受拉钢筋配筋率可不受限制,显然不够合理。为使按弹塑性工作阶段设计时,受拉钢筋不致配的过多,本条规定受拉钢筋最大配筋率不大于按弹性工作阶段设计时的配筋率,即表4.11.8。
4.10.5、4.10.6 试验表明,脆性破坏的安全储备小,延性破坏的安全储备大,为了使结构构件在最终破坏前有较好的延性,必须采用强柱弱梁与强剪弱弯的设计原则。
4.10.7 《混凝土结构设计规范》 (GB50010)中的抗剪计算公式,仅适用于普通工业与民用建筑中的构件,它的特点是较高的配筋率、较大的跨高比(跨高比大于14的较多)、中低混凝土强度等级以及适中的截面尺寸等,而人防工程中的构件特点是较低的配筋率、较小的跨高比(跨高比在8至14之间较多)、较高混
凝土强度等级以及较大的截面尺寸。为弥补上述差异产生的不安全因素,根据清华大学分析研究结果,对此予以修正。
根据收集到的有关试验资料,在均布荷载作用下,当跨高比在8至14之间,考虑主筋屈服后剪切破坏这一不利影响,并参考国外设计规范中的有关规定,回归得出偏下限抗剪强度计算公式如下:
4.10.11 采用e0值不宜大于0.95y的依据为:
1 试验表明,按抗压强度设计的砖砌体结构,当e0值超过1.0时,结构并未破坏或丧失承载能力;
2 苏联巴丹斯基著《掩蔽所结构计算》第五章指出:计算砖墙承受大偏心距的偏心受压动荷载时,偏心距的大小不受限制。
《砌体结构设计规范》(GB50003)第5.1.5条对原条文作出修改,要求e0≤0.6y。该规范附录D有关表格中只给出e0≤0.6y时的影响系数Φ值。当e0>0.6y时,Φ值可按该规范附录D中给出的公式计算。
4.11构造规定
4.11.1 本条根据《混凝土结构设计规范》(GB5001O)、《砌体结构设计规范》(GB50003)、《地下工程防水技术规范》(GB50108)等相关规范以及防空地下室结构选材的特点重新修订。
4.11.2 由于多本现行规范、规程对防水混凝土设计抗渗等级的取法不一致,易造成混乱,本条参照《地下工程防水技术规范》(GB50108)进一步明确。
4.11.6 本条根据防空地下室结构受力特点,参考《混凝土结构设计规范》(GB50010)和《建筑抗震设计规范》(GB50011)的规定提出,与三级抗震要求一致。
4.11.7 由于《混凝土结构设计规范》(GB50010)在构造要求中提高了纵向受力钢筋最小配筋百分率,为与其相适应,表4.11.7进行了调整。其中C40~C80受拉钢筋最小配筋百分率系按《混凝土结构设计规范》(GB5001O)中有关公式计算后取整给出,见表4-4:
由于防空地下室结构构件的截面尺寸通常较大,纵向受力钢筋很少采用HPB235级钢筋,故上表计算未予考虑。当采用HPB235级钢筋时,受弯构件、偏心受压及偏心受拉构件一侧的受拉钢筋的最小配筋百分率应符合《混凝土结构设计规范》(GB50010)中有关规定。
由于卧置于地基上防空地下室底板在设计中既要满足平时作为整个建筑物基础的功能要求,又要满足战时作为防空地下室底板的防护要求,因此在上部建筑层数较多时,抗力级别5级及以下防空地下室底板设计往往由平时荷载起控制作用。考虑到防空地下室底板在核武器爆炸动荷载作用下,升压时间较长,动力系数可取1.0,与顶板相比其工作状态相对有利,因此对由平时荷载起控制作用的底板截面,受拉主筋配筋率可参照《混凝土结构设计规范》(GB50010)予以适当降低,但在受压区应配置与受拉钢筋等量的受压钢筋。
4.11.11 双面配筋的钢筋混凝土顶、底板及墙板,为保证振动环境中钢筋与受压区混凝土共同工作,在上、下层或内、外层钢筋之间设置一定数量的拉结筋是必要的。考虑到低抗力级别防空地下室卧置地基上底板若其截面设计由平时荷载控制,且其受拉钢筋配筋率小于本规范表4.11.7内规定的数值时,基本上已属于素混凝ii作范围,因此提出此时可不设置拉结筋。但对截面设计虽由平时荷载控制,其受拉钢筋配筋率不小于表4.11.7内数值的底板,仍需按本条规定设置拉结筋。
4.12 平战转换设计
4.12.4 本条主要是明确不同部位钢筋混凝土及钢材封堵构件上等效静荷载的取值,以方便使用。
虽然出入口通道内封堵构件与出入口通道内临空墙所处位置相同,考虑到出入口通道内封堵构件为受弯构件,而出入口通道内临空墙为大偏心受压构件,因此对无升压时间核武器爆炸动荷载作用下的封堵构件动力系数取值为1.2,而不是大偏压时的1.33,即相应部位封堵构件上的等效静荷载标准值,可比临空墙上的等效静荷载标准值小约10%。在有升压时间核武器爆炸动荷载作用下,受弯构件与大偏压构件二者动力系数相差不大,故作用在封堵构件上等效静荷载标准值可按临空墙上等效静荷载标准值取用。
4.12.5 常规武器爆炸动荷载作用时间相对于核武器爆炸来讲,要小的多,一般仅数毫秒或几十毫秒。防护门及封堵构件在这样短的荷载作用下易发生反弹,造成支座处的联系破坏,例如防护门的闭锁和铰页等。本条采用了工程兵工程学院的科研报告《常规武器爆炸荷载作用下钢筋混凝土结构构件抗剪设计计算方法》中的研究成果,反弹荷载按弹塑性工作阶段计算,构件的允许延性比[β]取3.0。