中华人民共和国国家标准人民防空地下室设计规范GB 50038-2005条文说明 2
3.3.22 防毒通道是具有通风换气功能的密闭通道,为了使防毒通道能够形成不断的向外排风,在设有防毒通道的出入口附近必须设有排风口。排风口应该包括扩散室和竖井(或通向室外的通道)。而且在室外染毒情况下有人员通过时,为了防止毒剂进入室内,通道两端的人防门是不允许同时开启的。但由于原规范对防毒通道缺乏明确的要求,近期发现有的工程设计忽视了功能方面的要求,片面地强调提高防毒通道的换气次数,将防毒通道的尺寸确定的过小,以至于通过通道的人员在开启密闭门时,必须同时打开防护密闭门。因此,为了在防护密闭门处于关闭状态条件下,使通道内的人员能够正常地开启密闭门,就需要在密闭门的开启范围之外留出人员的站立位置。
3.3.23 洗消间是用于室外染毒人员在进入室内清洁区之前,进行全身消毒(或清除放射性沾染)的专用房间,由脱衣室、淋浴室和检查穿衣室三个房间组成。其中,脱衣室是供染毒人员脱去防护服及各种染毒衣物的房间。为防止毒剂和放射性灰尘的扩散,染毒衣物需集中密闭存放,因此脱衣室应设有贮存染毒衣物的位置。战时脱衣室污染较严重,为了不影响淋浴人员的安全,本条规定在淋浴室入口(即脱衣室与淋浴室之间)设置一道密闭门。淋浴室是通过淋浴彻底清除有害物的房间。房间中不仅设有一定数量的淋浴器,而且设有同等数量的脸盆,尤其是应该特别注意淋浴器、脸盆的设置一定要避免洗前人员与洗后人员的足迹交叉。检查穿衣室是供洗后人员检查和穿衣的房间,检查穿衣室应设有放置检查设备和清洁衣物的位置。淋浴室的出口(即淋浴室与检查穿衣室之间)设普通门。虽然可能有个别洗消人员没能完全清洗干净,将微量毒剂带入检查穿衣室,但将会通过通风系统的不断向外排风,会将毒剂排到室外。因而在不断通风换气的条件下,虽然在淋浴室与检查穿衣室之间只设一道普通门,但也不会污染检查穿衣室。由于脱衣室染毒的可能性很大,所以其与淋浴室、检查穿衣室之间必须设置密闭隔墙。对于洗消间和两道防毒通道,虽然其各个房间的染毒浓度不同,但均属染毒区。为此要求其墙面、地面均应平整光滑,以利于清洗,而且应该设置地漏。淋浴器和洗脸盆的数量是按照防护单元的建筑面积给出的。
3.3.24 本次规范修订已将防护单元的建筑面积放大到2000m2。目前最大的防护单元大致可以掩蔽1500人左右,其滤毒风量至少要3000m3/h。即使按一个掩蔽300人的(二等人员掩蔽所)防护单元计算,其滤毒新风量应不小于600m3/h。如果按防毒通道净高2.50m,换气次数≥40次/h计算,只要防毒通道面积≤6m2
即可满足换气次数要求。所以本条中"简易洗消宜与防毒通道合并设置"的提法是容易做到的。合并设置的做法更符合战时简易洗消的作业流程,而且也简化了口部设计,方便了施工。
关于简易洗消与防毒通道合并设置的具体要求:①防护密闭门与密闭门之间的人行道的宽度为1.30m,可以满足两个人的通行。②"宽度不小于0.60m"是在简易洗消区中放置洗消设施(如桌子、柜子、水桶等)的基本宽度要求, "面积不小于2.Om2"是放置洗消设施的最小的面积要求。
3.3.26 电梯主要是为平时服务的,由于战时的供电不能保证,而且在空袭中电梯也容易遭到破坏,故防空地下室战时不考虑使用电梯。如因平时使用需要,地面建筑的电梯直通地下室时,为确保防空地下室的战时安全,故要求电梯问应设在防空地下室的防护区之外。
3.4 通风口、水电口
3.4.1 从各地工程实践可以证明,如果平时进风口放在出入口通道中(或楼梯间)时,容易形成通风短路,室内的新风量不易保证。实践经验还说明,在南方地区的夏季通风会使出入口通道产生结露,而在北方地区的冬季通风会使出入口通道(或楼梯间)的温度明显降低。目前所建的防空地下室已经比较重视平时的开发利用,往往其平时的通风量与战时的通风量相差较大,有的通风方式也有所不同,故平时进风口宜单独设置。另外,从各地使用情况看,平时排风口若与出入口结合设置,会严重影响出入口通道的空气质量。在战时通风中,由于清洁通风的时间最长,在室外未染毒的情况下,人员进出频繁,若门扇经常开启,室内新风量也不容易保证。所以不论是平时通风口,还是战时通风口,本条均提出"宜在室外单独设置"。
3.4.3 医疗救护工程、专业队队员掩蔽部、人员掩蔽工程、食品站、生产车间以及柴油电站等防空地下室的室内战时有大量的人员休息或工作,因此要求不间断通风,所以其进风口、排风口、柴油机排烟口一般都处于开启状态。为了防止核爆炸(或常规武器爆炸)冲击波的破坏作用,均应采用消波设施。
3.4.4 人防物资库和专业队装备掩蔽部、人防汽车库等防空地下室是战时以掩蔽物资、装备为主的工程,有的室内有少量值班人员,有的室内无人。因此此种工程在空袭时可暂停通风。其进风口、排风口可在空袭前采用关闭防护密闭门的防护措施。由于人防物资库和专业队装备掩蔽部、人防汽车库的防毒要求不同,所以设置的门的数量不同。
3.4.5 在室外染毒的情况下,洗消间、简易洗消间和防毒通道等都要求能够通风换气,并把污染空气排至室外。因而要求洗消间、简易洗消间和防毒通道要结合排风口设置。又因为洗消间,简易洗消间和防毒通道等应设在战时主要出入口,所以排风口要设在作为战时主要出入口的室外出入口。此时最好是在室外单独设置进风口。如确实没有条件,二等人员掩蔽所的战时进风口也可以设在室内出入口。正如第3.3.3条说明所述,在核5级及以下的防空地下室的附近,钢筋混凝土结构和抗震型砖混结构的上部建筑,其主结构一般不会完全倒塌,因此设在室内出入口的进风口还不至于完全被堵塞。但为安全起见,本条规定只要进风口设在室内,就应采取相应的防堵塞措施。
3.4.6 要求悬板活门嵌入墙内,是根据悬板活门的工作性能决定的。悬板活门是依靠冲击波的能量在短暂时间内自动关闭的设备。为了保证在冲击波到达时能使悬板活门迅速地关闭,从而要求悬板活门必须嵌入墙内,并应满足嵌入深度的要求。
3.4.7 为了方便设计人员的使用,按照本规范附录F的有关规定,经过大量计算和综合工作,规范附录A给出了可供直接选用的表格。但需说明原规范中规定的消波系统的允许余压值,是按照设备的允许余压确定的,并没有考虑室内人员能够承受的压力大小。在《核武器的杀伤破坏作用与防护》 (1976年国防科委)一书第44页的冲击波损伤中写明: "冲击波超压为0.02~O.03MPa时,会造成人员的轻度冲击伤,其中听器损伤(鼓膜破裂、穿孔)和体表擦伤,但不会影响战斗力;冲击波超压为0.03~0.06MPa时,会造成人员的中度冲击伤,其中明显听器损伤(听骨骨折、鼓室出血),肺轻度出血、水肿,脑振荡,软组织挫伤和单纯脱臼等,会明显影响战斗力"。另外在《核袭击民防手册》(1982年原子能出版社)一书的第29页写到"虽然鼓膜穿孔需要0.140MPa,但是在0.035MPa那样低的超压下也有过耳膜破坏的记录"。由此可见,按照低标准要求,超压0.03MPa是人员能够承受的明显界限。如果超过0.03MPa会给人员造成严重的伤害。于是人员的允许余压一般都小于设备的允许余压(如排风口和无滤毒通风的进风口按0.05MPa)。因此只考虑设备的允许余压,不考虑人员的允许余压是不妥当的。此次修订(附录E消波系统)的条文规定消波系统的允许余压值,不论进风口,还是排风口均按防空地下室的室内有、无人员确定。并规定室内有人员的(如医疗救护工程、人员掩蔽工程、专业队队员掩蔽部、物资库等)防空地下室各通风口的扩散室允许余压均按0.03Mpa;室内没有人员的(如电站发电机房)防空地下室各通风口的扩散室允许余压均按0.05Mpa。
3. 4. 8 在乙类防空地下室和核6级、核6B级甲类防空地下室设计中,为简化口部设计,节省空间,方便施工,降低造价,又能保证战时的防护安全,本条规定用钢板制作的扩散箱代替钢筋混凝土的扩散室。扩散箱的大小是根据本规范附录F的要求确定的。经过模爆试验和技术鉴定确认,钢制扩散箱是有效的、可靠的。为了方便平时使用,本条规定可以预留扩散箱位置,临战时再行安装。
3.4.9 战时因更换过滤吸收器,滤毒室可能染毒,所以滤毒室应该设在染毒区。为在更换过滤吸收器时不影响清洁区,而且方便操作人员进出,故要求滤毒室的门要设在既能通往地面,又能通往室内清洁区的密闭通道(或防毒通道)内。并应注意到:滤毒室应邻近进风口;滤毒室宜分别与扩散室、进风机室相邻。同样为了方便操作,进风机室应该设在清洁区。
3. 4.10 在遭到化学袭击的一段时间过后,当室外染毒的浓度下降到允许浓度后,为了对主要出入口和进风口进行洗消,本条规定在主要出入口防护密闭门外以及进风口竖井内设置洗消污水集水坑,以便用来汇集洗消的污水。集水坑可按战时使用手动排水设施(或移动式电动排水设备)排水的标准设计。当因平时的需要口部已经设有集水坑时,战时可不再设置。
3.5 辅助房间
3. 5. 1 由于专业队队员掩蔽部、人员掩蔽工程和配套工程的战时用水,一般靠内部贮水(不设内部水源),而且战时一般也没有可靠的电源。按规定内部贮水只考虑饮用水和少量生活用水,不包括厕所用水。因此,本条规定上述两类工程宜设干厕。所以即使因平时使用需要,设置水冲厕所时,也应根据掩蔽人数或战时使用人数留出战时所需干厕(便桶)的位置。同时还应注意到,战时因人员较多,所需的便桶数量较平时的厕所蹲位数一般要多的情况。厕所位置靠近排风系统末端处,有利于厕所污秽气体的排除,以免使其外溢而影响室内空气清洁。一般来说,厕所蹲位多于三个时宜设前室或由盥洗室穿入。
3.6 柴油电站
3.6.3 移动电站采用的是移动式柴油发电机组,一般是在临战时才安装。所以移动电站应该设有一个能通往室外地面的机组运输口,此条只规定应设有"通至"室外地面的出入口。因此当设"直通"室外地面的出入口有困难时,可以由室内口运输柴油发电机组。
3.7 防护功能平战转换
3.7.3 本条是依据现行《战技要求》的有关规定,并参照《转换设计标准》中的相关规定,对于在防护密闭隔墙上开设平时通行口的问题作了较具体的规定。
3.7.4 在本次修订过程中,依据现行《战技要求》的有关规定,并参照《转换设计标准》中的规定,对由于平时需要在防护密闭楼板上开洞的问题作了较具体的规定。
3.7.5 在《转换设计标准》中对平时出入口的设置数量作了严格的限制。我们认为首先应该严格区分封堵方法,然后对不同的封堵方法作不同的限制。如对平时出入口采用预制构件进行封堵的做法,将会给临战时带来巨大的工作量,应该严格控制。但是,对平时出入口采用以防护密闭门为主进行封堵的做法,却不必作过于苛刻的限制。因为以防护密闭门为主进行封堵的做法,战时的防护容易落实,也不会给临战时造成太大的工作量。而在防空地下室设计中,情况往往十分复杂,由于消防的疏散距离等方面的要求,有时平时出入口的数量很难限制在2个以下。因此本条对采用预制构件封堵的平时出入口设置从严,而对以防护密闭门为主封堵的平时出入口采取从宽的规定。
3.8 防 水
3.8.3 上部建筑范围内的防空地下室顶板的防水一般是容易忽视的。为保证防空地下室的整体密闭性能,防空地下室顶板的防水十分重要。
3.9 内部装修
3.9.3 在冲击波作用下会引起防空地下室顶板的强烈振动,为了避免因振动使抹灰层脱落而砸伤室内人员,故本条规定顶板不应抹灰。平时设置吊顶时,龙骨应该固定牢固,饰面板应采用便于拆卸的,以便于临战时拆除吊顶饰面板。
4 结 构
4.1 一般规定
4.1.1 与普通地下室相比,防空地下室结构设计的主要特点是要考虑战时规定武器爆炸动荷载的作用。常规武器爆炸动荷载和核武器爆炸动荷载均属于偶然性荷载,具有量值大、作用时间短且不断衰减等特点。暴露于空气中的防空地下室结构构件,如高出地面不覆土的外墙、不覆土的顶板、口部防护密闭门及门框墙、临空墙等部位直接承受空气冲击波的作用。其它埋入土中的围护结构构件,如有覆土顶板、土中外墙及底板等,则直接承受土中压缩波的作用。此外,防空地下室内部的墙、柱等构件则间接承受围护结构及上部结构动荷载作用。
防空地下室的结构布置,必须考虑地面建筑结构体系。墙、柱等承重结构,应尽量与地面建筑物的承重结构相互对应,以使地面建筑物的荷载通过防空地下室的承重结构直接传递到地基上。
防空地下室的结构选型包括结构类别和结构体系的选择。结构类别一般可分为砌体结构和钢筋混凝土结构两种。当上部建筑为砌体结构,防空地下室抗力级别较低且地下水位也较低时,防空地下室可采用砌体结构。防空地下室钢筋混凝土结构体系常采用梁板结构、板柱结构以及箱型结构等,当柱网尺寸较大时,也可采用双向密肋楼盖结构、现浇空心楼盖结构。
目前在防空地下室中采用的预制装配整体式构件有叠合板、钢管混凝土柱及螺旋筋套管混凝土柱等。其它预制装配式构件,如有充分试验依据,也可逐步用于防空地下室。
4.1.2 设计使用年限是防空地下室结构设计的重要依据。设计使用年限是设计规定的一个时期,在这一规定的时期内,只需进行正常的维护而不需进行大修就能按预期目的使用,完成预定的功能,即建筑物在正常设计、正常施工、正常使用和维护下所应达到的使用年限。防空地下室结构在规定的设计使用年限内,除了满足平时使用功能要求外,甲类防空地下室应满足"能够承受常规武器爆炸动荷载和核武器爆炸动荷载的分别作用"的战时防护功能要求;乙类防空地下室应满足"能够承受常规武器爆炸动荷载作用"的战时防护功能要求。
4.1.3 现行《人民防空工程战术技术要求》将人民防空工程按可能受到的空袭威胁划分为甲、乙两类:甲类工程防核武器、常规武器、化学武器、生物武器袭击;乙类工程防常规武器、化学武器、生物武器的袭击。根据上述要求,本条提出甲类防空地下室结构应能承受常规武器爆炸动荷载和核武器爆炸动荷载的分别作用,乙类防空地下室结构应能承受常规武器爆炸动荷载的作用。另外,无论是常规武器,还是核武器,设计时均只考虑一次作用。对于甲类防空地下室结构,取其中最不利情况进行设计计算,不需叠加。
4.1.4 本条是在确定设计标准的前提下,考虑到防空地下室结构各部位作用的荷载值不同、破坏形态不同以及安全储备不同等因素,为防止由于存在个别薄弱环节致使整个结构抗力明显降低而提出的一条重要设计原则。所谓抗力相协调即在规定的动荷载作用下,保证结构各部位(如出入口和主体结构)都能正常地工作。
4.1.5 本条规定在常规武器爆炸动荷载或核武器爆炸动荷载作用下,结构动力分析一般采用等效静荷载法,是从防空地下室结构设计所需精度及尽可能简化设计考虑。
由于在动荷载作用下,结构构件振型与相应静荷载作用下挠曲线很相近,且动荷载作用下结构构件的破坏规律与相应静荷载作用下破坏规律基本一致,所以在动力分析时,可将结构构件简化为单自由度体系。运用结构动力学中对单自由度集中质量等效体系分析的结果,可获得相应的动力系数,用动力系数乘以动荷载峰值得到等效静荷载。等效静荷载法规定结构构件在等效静荷载作用下的各项内力(如弯矩、剪力、轴力)就是动荷载作用下相应内力最大值,这样即可把动荷载视为静荷载。由于等效静荷载法可以利用各种现成图表,按照结构静力分析计算的模式来代替动力分析,所以给防空地下室结构设计带来很大方便。
试验结果与理论分析表明,对于一般防空地下室结构在动力分析中采用等效静荷载法除了剪力(支座反力)误差相对较大外,不会造成设计上明显不合理,因而是能够保证战时防护功能要求的。对于特殊结构也可按有限自由度体系采用结构动力学方法,直接求出结构内力。
4.1.6 本条是针对动荷载特点,以及人防工程在遭受袭击后的使用要求提出的。
在动荷载作用下结构变形极限,本规范第4.6.2条规定用允许延性比控制。由于在确定各种结构构件允许延性比时,已考虑了对变形的限制和防护密闭要求,因而在结构计算中不必再单独进行结构变形和裂缝开展的验算。
由于在试验中,不论整体基础还是独立基础,均未发现其地基有剪切或滑动破坏的情况。因此,本条规定可不验算地基的承载力和变形。但对自防空地下室引出的各种刚性管道,应采取能适应由于地基瞬间变形引起结构位移的措施,如采用柔性接头。
4.1.7 由于防空地下室平时与战时的使用要求有时会出现矛盾,因此设计中如何既能满足战时要求又能满足平时要求,常会遇到困难。为较好地解决这一矛盾,本条提出可采用"平战转换设计"这一设计方法。其基本思路是:在设计中对防空地下室的某些部位(如专供平时使用的较大出入口),可以根据平时使用需要进行设计,但与此同时,设计中也考虑了满足战时防护要求所必需的平战转换措施(包括转换的部位,如何适应转换后结构支承条件的变化及如何在规定的转换时间内实施全部转换工作的具体措施)。通过这种设计,防空地下室既能充分地满足平时使用需要,又能通过临战时实施平战转换达到战时各项防护要求。但这种做法只能在抗力级别较低,防空地下室平时往往作为公共设施的情况下使用,故在本条规定中提出限于乙类防空地下室和核5级、核6级、核6B级甲类防空地下室采用。
4.1.8 多层或高层地面建筑的防空地下室结构,是整个建筑结构体系的一部分,其结构设计既要满足平时使用的结构要求,又要满足战时作为规定设防类别和级别的防护结构要求,即防空地下室结构设计应同时满足平时和战时二种不同荷载效应组合的要求。因此,规定在设计中应取其控制条件作为防空地下室结构设计的依据。
4.2 材 料
4.2.1 防空地下室结构材料应根据使用要求、上部建筑结构类型和当地条件,采用坚固耐久、耐腐蚀和符合防火要求的建筑材料。
本条提出在地下水位以下或有盐碱腐蚀时外墙不宜采用砖砌体,是考虑到砖外墙长期在地下水位以下或有盐碱腐蚀的土中会造成表面剥落,腐蚀较快,不能保持应有的强度。但从调查中确也发现,在同样条件下,有少量工程由于材料及施工质量较好等原因,经过数十年时间考验至今仍然完好。因此在有可靠技术措施条件下,为降低造价外墙采用砖砌体也非绝对不可。但在一般情况下,为确保工程质量,还是尽可能不用砖砌体作外墙为好。
4.2.2 对防空地下室中钢筋混凝土结构构件来说,处于屈服后开裂状态仍属正常的工作状态,这点与静力作用下结构构件所处的状态有很大不同。冷轧带肋钢筋、冷拉钢筋等经冷加工处理的钢筋伸长率低,塑性变形能力差,延性不好,故本条规定不得采用。
4.2.3 表4.2.3给出的材料强度综合调整系数是考虑了普通工业与民用建筑规范中材料分项系数、材料在快速加载作用下的动力强度提高系数和对防空地下室结构构件进行可靠度分析后综合确定的,故称为材料强度综合调整系数。
本规范在确定材料动力强度提高系数时,取与结构构件达到最大弹性变形时间为50ms时对应的一组材料动力强度提高系数。
同一材料在不同受力状态下可取同一材料强度提高系数。试验表明:在快速变形下,受压钢筋强度提高系数与受拉钢筋相一致。混凝土受拉强度提高系数虽然比受压时大,但考虑龄期影响,混凝土后期受拉强度比受压强度提高的要少,二者综合考虑,混凝土受拉、受压可取同一材料强度提高系数。钢筋混凝土构件受弯时材料强度的提高,可看成混凝土受压和钢筋受拉强度的提高;受剪时材料强度的提高,可看成混凝土受拉或受压强度的提高。砌体材料因缺乏完整试验资料,近似参考砖砌体受压强度提高系数取值。钢材的材料强度提高系数是参照钢筋的材料强度提高系数给出。
由于混凝土强度提高系数中考虑了龄期效应的因素,其提高系数为1.2~1.3,故对不应考虑后期强度提高的混凝土如蒸气养护或掺入早强剂的混凝土应乘以0.9折减系数。
根据对钢筋、混凝土及砖砌体的试验,材料或构件初始静应力即使高达屈服强度的65%~70%,也不影响动荷载作用下材料动力强度提高的比值,因此在动荷载与静荷载同时作用下材料动力强度提高系数可取同一数值。
4.2.4 试验证明,动荷载作用下钢筋弹性模量与静荷载作用下相同;混凝土和砌体弹性模量是静荷载作用下的1.2倍。
4.3 常规武器地面爆炸空气冲击波、土中压缩波参数
4.3.1 根据现行《人民防空工程战术技术要求》,防常规武器抗力级别为5、6级的防空地下室按常规武器非直接命中的地面爆炸作用设计。由于常规武器爆心距防空地下室外墙及出入口有一定的距离,其爆炸对防空地下室结构主要产生整体破坏效应。因此,防空地下室防常规武器作用应按防常规武器的整体破坏效应进行设计,可不考虑常规武器的局部破坏作用。
4.3.2 常规武器地面爆炸产生的空气冲击波与核武器爆炸空气冲击波相比,其正相作用时间较短,一般仅数毫秒或数十毫秒,往往小于结构发生最大动变位所需的时间,且其升压时间极短。因此在结构计算时,可按等冲量原则将常规武器地面爆炸产生的空气冲击波波形简化为突加三角形,以方便进行结构动力分析。
4.3.3 常规武器地面爆炸在土中产生的压缩波在向地下传播时,随着传播距离的增加,陡峭的波阵面逐渐变成有一定升压时间的压力波,其作用时间也不断加大。因此,为便于计算,可将土中压缩波波形按等冲量原则简化为有升压时间的三角形。
4.3.4 对于防空地下室,由于上部建筑的存在,地面爆炸产生的空气冲击波需穿过上部建筑的外墙、门窗洞口作用到防空地下室顶板和室内出入口。在空气冲击波传播过程中,上部建筑外墙、门窗洞口对空气冲击波产生一定的削弱作用。故当符合条文中规定的条件时,可考虑上部建筑对作用在防空地下室顶板和室内出入口荷载的影响,将空气冲击波最大超压乘以0.8的折减系数。
4.3.5 防空地下室结构构件在常规武器爆炸动荷载作用下,动力分析采用等效静荷载法既保证了一定的设计精度,又简化了设计。一般来说,常规武器爆炸作用在防空地下室结构构件上的动荷载是不均匀的,而若采用等效静荷载法,必须是一均布荷载。因此,必须对作用在防空地下室结构构件上的常规武器爆炸动荷载进行均布化处理,具体的均布化处理和动荷载计算方法见本规范附录B。
4.4 核武器爆炸地面空气冲击波、土中压缩波参数
4.4.1 为便于利用现成图表和公式进行动力分析,通常需要将荷载曲线简化成线性衰减等效波形。所谓等效,主要是保证将实际荷载曲线简化为线性衰减波形后能产生相等的最大位移。对于一次作用的脉冲荷载,只需对达到最大位移时间前那段荷载曲线作出简化,而在此以后的曲线变化并不重要。由于防空地下室结构在核武器爆炸冲击波荷载作用下,其最大变位往往发生在超压时程曲线早期,因此按与曲线面积大体相等,且形状也尽可能接近的原则,经推导简化后得出在峰值压力处按切线简化的三角形波形。
地面空气冲击波参数与核武器当量和爆炸高度有关。本次修订由于核武器当量和比例爆高作了适当调整,表4.4.1中设计参数与原规范有所差别。
4.4.2 土中压缩波可简化为有升压时间平台形荷载,是因为土中压缩波作用时间往往比结构达到最大变位时间长十几倍到几十倍,所以简化成有升压时间的平台形荷载后,其误差尚在允许范围内,且可明显简化计算。
4.4.3 由于岩土仅在很低压力下才呈弹性,加之塑性波速与众多因素有关而难以准确确定,因此在土性参数计算中采用起始压力波速和峰值压力波速。其值系先通过土性试验作出土侧限应力一应变关系曲线,然后经计算确定自由场压缩波传播规律,最后综合考虑升压过程中应力起跳时间和峰值压力到达时间以及深度等因素后确定。
通过计算比较,当h≤1.5m时峰值压力仅衰减2%左右,因此当h≤1.5m时,可不考虑峰值压力的衰减。
4.4.4 关于墙体材料,按相当于一般砖砌体的强度作为考虑对冲击波波形影响的条件。故对采用石棉板、矿碴板等轻质材料的墙体以不考虑其对冲击波的影响为宜;对预制混凝土大板的墙体,一般可视同砖墙,可考虑其对冲击波波形的影响。
对核4级和核4B级防空地下室,由于缺乏试验资料,暂不考虑上部建筑对冲击波波形的影响。
4.4.7 根据国外资料,对上部建筑为钢筋混凝土承重墙结构,当地面超压为0.2N/mm2以上时才倒塌;对抗震的砌体结构(包括框架结构中填充墙),当地面超压为0.07N/mm2左右才倒塌。
考虑到在预定冲击波地面超压作用下,上部建筑物不倒塌,或不立即倒塌,必然会使冲击波产生反射、环流等效应,因此对防空地下室迎爆面的土中外墙动荷载将有所影响。由于这方面试验资料不足,本条在参考国外有关规定的基础上,对于上述条件下的地面空气冲击波最大压力予以适当提高。
4.5 核武器爆炸动荷载
4.5.1 对全埋式防空地下室,考虑到空气冲击波的传播速度一般比土中压缩波传播速度快,因而土中压缩波的波阵面与地表之间夹角比较小,可近似将土中压缩波看成是垂直向下传播的一维波。又由于防空地下室尺寸相对于压缩波波长较小,因而可进一步假定按同时均匀作用于结构各部位设计。
对顶板底面高出室外地面的防空地下室,迎爆面高出地面的外墙将首先受到空气冲击波作用。考虑到从迎爆面的外墙开始受荷到背面墙受荷,会有一定的时间间隔,且背面墙上所受荷载要比迎爆面小,为简化计算,本条规定仅对高出地面的外墙考虑迎爆面单面受荷。另外由于空气冲击波的实际作用方向不确定,所以设计时应考虑四周高出地面的外墙均可能成为迎爆面。
4.5.3 对于覆土厚度大于或等于不利覆土厚度的综合反射系数K值,主要是考虑了不动刚体反射系数、结构刚体位移影响系数以及结构变形影响系数后得出的。另外,研究结果表明:土中小变形结构的顶部荷载,一维效应起主导作用,二维效应影响甚微,即结构外轮廓尺寸的大小对K值的影响很小。故本规范不考虑二维效应这一影响因素。
关于饱和土中压缩波的传播及饱和土中结构动荷载作用规律的分析研究,目前可供应用的资料有限,现根据已进行过的少量核武器爆炸、化爆和室内模爆试验结果,提出了较为粗略的估算方法。
4.5.4 由于土中压缩波随传播距离的增加峰值压力减小,升压时间增长,其效果是随深度的增加结构的动力作用逐渐降低。另一方面,当压缩波遇到结构顶板时,将会产生反射压缩波并朝反向传播,当它到达自由地表面时,因地表无阻挡面使土体趋向疏松,形成向下传播的拉伸波。拉伸波所到之处压力将迅速降低,当拉伸波传到顶板时,顶板压力也将随之减小。如果顶板埋置较深,拉伸波到达时间较晚,在此之前结构顶板可能已达到最大变形,因而拉伸波不能起到卸荷作用;如果顶板埋深很浅,由于拉伸波产生的卸荷作用,将会抵消大部分入射波在顶板上形成的反射作用。根据以上多种影响因素综合考虑,承受压缩波作用的土中浅埋结构,会有一个顶板不利覆土厚度。通过试验分析,其不利覆土厚度的大小,主要与地面超压值、结构自振频率以及结构允许延性比等因素有关。为便于使用,本条给出的不利覆土厚度,是经综合分析后简化得出的。
4.5.5 为与表4.4.3-1相对应,表4.5.5中增加了老粘性土、红粘土、湿陷性黄土、淤泥质土的侧压系数。
4.5.6 当防空地下室顶板底面高出室外地面时,高出地面的外墙将承受空气冲击波直接作用。考虑到地面建筑外墙一般开有孔洞,迎爆面冲击波将产生明显的环流效应,故可近似取反射系数的下限值2.0。由此可取防空地下室高出室外地面外墙的最大水平均布压力为2△Pm 。