咨询电话:0451-55577555
全站搜索:
您现在的位置:首页 >> 工程规范 >> 规划规范
中华人民共和国国家标准城镇燃气设计规范GB 50028-2006 7
摘自:龙房川
点击: 13125996次
发布时间:2010/3/31

 

中华人民共和国国家标准城镇燃气设计规范GB 50028-2006 7

8 焦炉煤气的产率挥发分(Vf,%)     27  28  29  30 

煤气生产量(m3t) 324      326      348      360     

全焦产率随配煤挥发分增加相应要减少,焦炭中剩余挥发分的多少也影响全焦率的大小。在正常情况下,全焦率的波动范围较小,实际全焦率大于理论全焦率,其差值称为校正系数"a"。煤料的初次产物(荒煤气)遇到灼热的焦炭裂解时会生成石墨沉积于焦炭表面;挥发分越高,其裂解机会越多, "a"值也就越大。

全焦率计算公式:

式中 B--全焦率()

V干煤--配煤的挥发分(干基)()

V千焦--焦炭中的挥发分(干基)()

本规范所定全焦率指标就是根据此公式计算的。

此公式经焦化厂验证,实际全焦率与理论计算值是比较接近的。生产统计所得校正系数"a"相差不超过1%。

直立炉所产的煤气及气焦的产率与挥发分、水分、灰分、煤的粒度及操作条件有关,条文中所规定各项指标也都是根据历年生产统计资料制定的。

4.2.9 焦炉的结构有单热式和复热式两种。焦炉的加热煤气耗用量一般要达到自身产气量的45%~60%。如果利用其他热值较低的煤气来代替供加热用的优质回炉煤气,不但能提高出厂焦炉气的产量达l倍左右,而且也有利于焦炉的调火操作。各地煤气公司就是采用这种办法。此外,城市煤气的供应在1年中是不均衡的。在南方地区一般是寒季半年里供气量较大。此时焦炉可用热值低的煤气加热;而在暑季的半年里供气量较小,此时又可用回炉煤气加热。所以针对煤气厂的条件来看以采用复热式的炉型较为合适。

4.2.10 本条规定了加热煤气耗热量指标。

当采用热值较低的煤气作为煤干馏炉的加热煤气以顶替回炉煤气时,以使用机械发生炉(含两段机械发生炉或高炉)煤气最为相宜,因为它具有燃烧火焰长,可用自产的中小块气焦(弱粘结烟煤)来生产等项优点。上海、长春、昆明、天津、北京、南京等煤气公司加热煤气都是采用机械发生炉(或两段机械发生炉)煤气。

煤干馏炉的加热煤气的耗热量指标是一项综合性的指标。焦炉的耗热量指标是按鞍山焦耐院多年来的经验总结资料制定的。对炭化室有效容积大于20m3的焦炉。用焦炉煤气加热时规定耗热量指标为2340kJkg。而根据实测数据,当焦炉的均匀系数和安定系数均在0.95以上时,3个月平均耗热量为2260kJkg;当全年的均匀系数和安定系数均在o.90以上时,耗热量为2350kJkg。这说明本条规定的指标是符合实际情况的。

根据国务院国办[2003]10号文件及国家经贸委第14号令的精神:今后所建焦炉炭化室高度应在4m以上(折合容积大于20m3)。因此炭化室容积约为1Om3和小于6m3的焦炉耗热量指标不再编人本条正文中。故在此条文说明中保留,以供现有焦炉生产、改建时参考(见表9)

9 焦炉耗热量指标[kJkg()]加热煤气种类     炭化室有效容积(m3)      适用范围 

10 6          

焦炉煤气     2600    2930    作为计算生产消耗用    

发生炉煤气  2930    3260    作为计算生产消耗用    

焦炉煤气     2850    3180    作为计算加热系统设备用  

发生炉煤气  3140    3470    作为计算加热系统设备用  

直立炉的加热使用机械发生炉热煤气,由于热煤气难于测定煤气流量,在制定本条规定时只能根据生产上使用发生炉所耗的原料量的实际数据(每吨煤经干馏需要耗用180210kg的焦),经换算耗热量为25903010kJkg。考虑影响耗热量的因素较多,故指标按上限值规定为3010kJkg

上面所提到的耗热量是作为计算生产消耗时使用的指标。在设计加热系统时,还需稍留余地,应考虑增加一定的富裕量。根据鞍山焦耐院的总结资料,作为生产消耗指标与作为加热系统计算指标的耗热量之间相差为210250kJkg。本条规定的加热系统计算用的耗热量指标就是根据这一数据制定的。

4.2.11 本条规定了加热煤气管道的设计要求。

1 要求发生炉煤气加热的管道上设置混入回炉煤气的装置,其目的是稳定加热煤气的热值,防止炉温波动。在回炉煤气加热总管上装设预热器,其目的是以防止煤气中的焦油、萘冷凝下来堵塞管件,并使人炉煤气温度稳定。

2 在加热煤气系统中设压力自动调节装置是为了保证煤气压力的稳定,从而使进入炉内的煤气流量维持不变,以满足加热的要求。

3 整个加热管道中必须经常保持正压状态,避免由于出现负压而窜人空气,引起爆炸事故。因此必须规定在加热煤气管道上设煤气的低压报警信号装置,并在管道未端设置爆破膜,以减少爆破时损坏程度。

5 加热煤气管道一般都是采用架空方式,这主要是考虑到便于排出冷凝物和清扫管道。

4.2.12 直立炉、焦炉桥管设置低压氨水喷洒,主要是使氨水蒸发,吸收荒煤气显热,大幅度降低煤气温度。

直立炉荒煤气或焦炉集气管上设置煤气放散管是由于直立炉与焦炉均为砖砌结构,不能承受较高的煤气压力,炉顶压力要求基本上为土。大气压,防止砖缝由于炉内煤气压力过高而受到破坏,导致泄漏而缩短炉体寿命并影响煤气产率和质量。制气厂的生产工艺过程极为复杂,各种因素也较多,如偶尔逢电气故障、设备事故、管道堵塞时,干馏炉生产的煤气无法确保安全畅通地送出,而制气设备仍在连续不断地生产;同时,产气量无法瞬时压缩减产,因此必须采取紧急放散以策安全。放散出来的煤气为防止污染环境,必须燃烧后排出。放散管出口应设点火装置。

4.2.13 本条规定了干馏炉顶荒煤气管的设计要求。

1 荒煤气管上设压力自动调节装置的主要理由如下:

1)煤干馏炉的荒煤气的导出流量是不均匀的,其中焦炉的气量波动更大,需要设该项装置以稳定压力;否则将影响焦炉及净化回收设备的正常生产。

2)正常操作时要求炭化室始终保持微正压,同时还要求尽量降低炉顶空间的压力,使荒煤气尽快导出。这样才能达到减轻煤气二次裂解,减少石墨沉积,提高煤气质量和增加化工产品的产量和质量等目的,因此需要设置压力调节装置。

3)为了维持炉体的严密性也需要设置压力调节装置以保持炉内的一定压力。否则空气窜人炉内,造成炉体漏损严重、裂纹增加,将大大降低炉体寿命。

2 因为煤气中含有大量焦油,为了保证调节蝶阀动作灵活就要防止阀上粘结焦油,因此必须采取氨水喷洒措施。

3 由于煤气产量不够稳定,煤气总管蝶阀或调节阀的自动控制调节是很重要的安全措施。尤其是当排送机室、鼓风机室或调节阀失常时,必须加强联系并密切注意,相互配合。当调节阀用人工控制调节时,更应加强信号联系。

4.2.14 捣炉与放焦的时间,在同一碳化炉上应绝对错开。捣炉或放焦时,炉顶或炉底的压力必须保持正常。任何一操作都会影响炉顶或炉底的压力,当炉顶与炉底压力不正常,偶尔空气渗入时,煤气与空气混合成爆炸性混合气遇火源发生爆炸,从而使操作人员受到伤害。因此捣炉与放焦之间应有联系信号,应避免在一个炉子上同时操作。

焦炉的推焦车、拦焦车、熄焦车在出焦过程中有密切的配合关系,因此在该设备中设计有连锁、控制装置,以防发生误操作。

4.2.15 设置隔热装置是为了减少上升管散发出来的热量,便于操作工人的测温和调火。

首钢、鞍钢为了改善焦炉的生产环境污染和节约能源,从1981年开始使用以高压氨水代替高压蒸汽进行消烟装煤生产以来,各地焦炉相继采用这项技术,已有20多年的历史了,对减少焦炉冒烟,降低初冷的负荷和冷凝酚水量取得了行之有效的结果,并经受了长时间的考验。

4.2.16 焦炉氨水耗量指标,多年来经过实践是适用的。总结各类焦炉生产情况该指标为68m3t(),焦炉当采用双集气管时取大值,单集气管时取小值。

直立炉的氨水耗量主要是总结了实际生产数据。指标定为"4m3t()"比焦炉低,这是因为直立炉系中温干馏,荒煤气出口温度较低的原因。

高压氨水的耗量一般为低压氨水总耗量的130(3.4%~3.6)左右。这个数据是一个生产消耗定额,是以一个炭化室每吨干煤所需要的量。当选择高压氨水泵的小时流量时应考虑氨水喷嘴的孑L径及焦炉加煤和平煤所需的时间。高压氨水压力应随焦炉炭化室容积不同而不同,这次规范修改是根据1999年焦化行业协会,与会专家一致认为4.3m以下焦炉高压氨水压力1.82.5MPa6m以下焦炉高压氨水压力为1.82.7MPa,完全可以满足焦炉的无烟装置操作,结合焦耐设计院近几年设计高压氨水多采用2.2MPa,压力过高影响焦油、氨水质量(煤粉含量高)的意见,因此对高压氨水压力调整为1.52.7MPa。每个工程设计在决定高压氨水泵压力时还应考虑焦炉氨水喷嘴安装位置的几何标高。氨水喷嘴的构造形式以及管线阻力等因素。

该条文中所规定的高压氨水的压力和流量指标均以当前几种常用的喷嘴为依据。如果喷嘴形式有较大变化,若设计时将高、低压氨水合用一个喷嘴,那么喷嘴的设计性能既要满足高压氨水喷射消烟除尘要求,又要保证低压氨水喷洒冷却的效果。

低压氨水应设事故用水,其理由是一旦氨水供应出问题,不致影响桥管中荒煤气的降温。事故用水一般是由生产所要求设置的清水管来供应的,为了避免氨水倒流进清水管系统腐蚀管件,该两管不应直接连接。

直立炉氨水总管以环网形连通安装,可避免管道末端氨水压力降得太多而使流量减少。

4.2.17 废热锅炉的设置地点与锅炉的出力有很大关系。同样形式的两台废热锅炉由于安装高度不一样,结果在产气量上有明显差别(见表10)

10 废热锅炉产气量的比较放置地点  废气进口温度、产气量 蒸气压力  引风机功率     

      th     (MPa)  (kW)  

14m标高处    900      67    0.637   23 

±Om标高处     800      56    0.558   55 

注;废气总管标高为+8.5m处。

废热锅炉有卧式、立式、水管式与火管式、高压与低压等种类。采用火管式废热锅炉时,应留有足够的周围场地与清灰的措施,有利于清灰。

在定期检修或抢修期间,检修动力机械设备、各种类型的泵、调换火管等工作要求周围必须留有富裕的场地,便于吊装,有利于改善工作环境,并缩短检修周期。一般每一台废热锅炉的安全运行期为6个月,82英寸30门直立炉附属废热锅炉的每小时蒸汽产量可达6t左右。

采用钢结构时,结构必须牢固,在运行中不应有振动,防止机械设备损坏,影响使用寿命或造成环境噪声。

4.2.18 本条规定了直立炉熄焦系统的设计要求。

1 本款规定主要是保证熄焦水能够连续(排焦是连续的)均衡供应。从三废处理角度出发,熄焦水中含酚水应循环使用,以减少外排的含酚污水量。

2 排焦传动装置采用调速电机控制,可达到无级变速,有利于准确地控制煤斤行速。

3 当焦炭运输设备一旦发生故障而停止运转进行抢修12h时,还能保持直立炉的生产正常进行。因此,排焦箱容量须按4h排焦量计算。

采用弱粘结性块煤时,为防止炉底排焦轴失控,造成脱煤、行速不均匀甚至造成爆炸的事故,炉底排焦箱内必须设置排焦控制器。现国内外已在W-D连续直立炉的排焦箱内推广应用。

4 为了减轻劳动强度、减少定员,人工放焦应改成液压机械排焦。为此,本款规定排焦门的启闭宜采用机械化设备,这是必要和可能的。

5 熄焦过程是在排焦箱内不断地利用循环水进行喷淋,每2h放焦一次,焦内含水量一般在15%左右。当焦中含水分过高、含屑过多时,筛焦设备在分筛统焦过程中就会遇到困难,不易按级别分筛完善,不利于气化生产的原料要求与保证出售商品焦的质量。因此,不论采取什么运输方式,在运输过程中应有一段沥水的过程,以便逐步减少统焦中的水分,一般应考虑80s的沥水时间,从而有利于分筛。80s系某厂三组炭化炉自放焦、吊焦至筛焦的实测沥水时间的平均值。

4.2.19 湿法熄焦是目前焦化工业普遍采用的方法。载有赤热焦炭的熄焦车开进熄焦塔内,熄焦水泵自动(靠电机车压合极限开关或采用无触点的接近开关)喷水熄焦。并能按熄焦时间自动停止。熄焦时散发出含尘蒸汽是污染源,因此熄焦塔内应设置捕尘装置,效果尚好。熄焦用水量与熄焦时间是长期实践总结出的生产指标,可作为熄焦水泵选择的依据。

熄焦后的水经过沉淀池将粉焦沉淀下来,澄清后的水继续循环使用。因此沉淀池的长、宽尺寸应能满足粉焦的完全沉降,以及考虑粉焦抓斗在池内操作,以降低工人体力劳动强度。

提出大型焦化厂应采用于法熄焦。由于大型焦炉产量高,如100ta规模的焦化厂每小时出焦量114t,并根据宝钢干熄焦生产经验,1t红焦可产生压力4.6MPa,温度为450的中压蒸汽O.45t,是节能、改善焦炭质量和环境保护的有效措施;但由于基建投资高,资金回收期长,所以只有大型焦化厂采用。

4.2.20 在熄焦过程中蒸发的水量为0.4m3t干煤,最好是由清水进行补充,但为了减少生产污水的外排量,可以使用生化处理后符合指标要求的生化尾水补充。

4.2.21 焦台设计各项数据是根据鞍山焦耐院对放焦过程的研究资料,以及该院对各厂的生产实践归纳出来的经验和数据而做出的。经测定及生产经验得知,运焦皮带能承受的温度一般是70 80,因此要求焦炭在焦台上须停留30min以上,以保证焦炭温度由100130降至7080

4.2.22 熄焦后的焦炭是多级粒度的混合焦,根据用户的需要须设筛焦楼,将混合焦粒度分级。综合冶金、化工、机械等行业的需要,焦炭筛分的设施按直接筛分后焦炭粒度大于40mm40 25mm2510mm和小于10mm,共4级设计。为满足铁合金的需要,有些焦化厂还将小于10mm级的焦炭筛分为105mm和小于5mm两级,前者可用于铁合金。也有焦化厂为了供铸造使用,将大于6080mm筛出。 (详见《冶金焦炭质量标准》GB 1996,《铸造焦炭质量标准》GB 8729)。有利于经济效益和综合利用。

城市煤气厂生产的焦炭必须要有储存场地以保证正常的生产。对于采用直立炉的制气厂,厂内一般都设置配套的水煤气炉和发生炉设施。故中、小块以及大块焦都直接由本厂自用,经常存放在储焦场地上的仅为低谷生产任务时的大块焦和一部分中、小块焦。因此储焦场地的容量为"34d"产焦量计算就够了。

采用炭化室有效容积大于20m3焦炉的制气厂焦炭总产量中很大部分是供给某一固定钢铁企业用户的。一般是按计划定期定量地采用铁路运输方式由制气厂向钢铁企业直接输送焦炭。

筛分设备在运行时,振动扬尘很大,从安全和工业卫生要求必须有除尘通风设施。

4.2.23 在筛焦楼内设有储焦仓,对于直立炉的储焦仓容量规定按1012h产焦量确定。这是根据目前生产厂的生产实践经验提出的。80门直立炉二座筛焦楼,其储焦仓容量约为11h产焦量,从历年生产情况看已能满足要求。

焦炉的储焦仓容量按68h产焦量的规定,基本上是按照鞍山焦耐院历年来对各厂的生产总结资料确定的。生产实践证明不会影响焦炉的正常操作。

4.2.24 储焦场地应平整光洁,对倒运焦炭有利。

4.2.25 独立炼焦制气厂在铁路或公路运输周转不开的情况下,才需要将必须落地的焦炭存放在储焦场内。储焦场的操作容量,当铁路运输时,宜采用15d产焦量;当采用公路运输时,宜采用20d产焦量。

4.2.26 直立炉的气焦用于制气时一般可采用两种工艺:一为生产发生炉煤气,二为生产水煤气。发生炉的原料要求使用中、小块气焦,既有利于加焦,又有利于气化,另外成本也较低,因此将自产气焦制作发生炉煤气是较为合理的。水煤气的原料要求一般是大块焦。用它生产的水煤气成本高,作为城市煤气的主气源是不经济和不安全的。所以规定这部分生产的水煤气只供作为调峰掺混气,以适应不经常的短期高峰用气的要求。

注:大块焦为4060mm,中、小块焦为2540mm251Omm

4.3 煤的气化制气

4.3.1 煤的气化制气的炉型,本次规范修编由原有煤气发生炉、水煤气发生炉2种炉型基础上,又增加了两段煤气发生炉、两段水煤气发生炉和流化床水煤气炉等3种炉型,共5种炉型。

1 两段煤气发生炉和两段水煤气发生炉的特点是在煤气发生炉或水煤气发生炉的上部。增设了一个干馏段,这就可以广泛使用弱粘性烟煤,所产煤气,不但比常规的发生炉煤气、水煤气的发热量高,而且可以回收煤中的焦油。1980年以来两段煤气发生炉,在我国的机械、建材、冶金、轻工、城建等行业作为工业加热能源广泛地被采用。粗略的统计有近千台套,两段水煤气发生炉已被采用作为城镇燃气的主气源(如:秦皇岛市、阜新市、威海市、保定市、白银市、汉阳市、安亭县等),但该煤气供居民用CO指标不合格,应采取有效措施降低CO含量。

这两种炉型,国内开始采用时,是从波兰、意大利、法国、奥地利等国引进技术,(国外属20世纪40年代技术)后通过中国市政工程华北设计研究院、机械部设计总院、北京轻工设计院等单位消化吸收,按照中国的国情设计出整套设备和工艺图纸,一些设备厂家也成功地按图制造出合格的产品,满足了国内市场的需要。取得了各种生产数据,达到预想的结果。所以该工艺在技术上是成熟的,在运行时是安全可靠的。

2 流化床水煤气炉,是我国自行研制的一种炉型,是由江苏理工大学(江苏大学)研究发明:1985年承担国家计委节能局"沸腾床粉煤制气技术研究"课题(节科8507)建立ф500mm小型试验装置,1989年通过机电部组织的部级鉴定(机械委{88)教民005)1989年又提出流化床间歇制气工艺,并通过ф2OOmm实验装置的小试,1990年在镇江市灯头厂建立ф4OOmm的流化床水煤气试验示范站,日产气3000m3,为工业化提供了可靠的技术数据及放大经验,并获国家发明专利(专利号ZL90105680.4)1996年郑州永泰能源新设备有限公司从江苏理工大学购置粉煤流化床水煤气炉发明专利的实施权,经过开发1998年完成ф1.6m气化炉的工业装置成套设备,并建成郑州金城煤气站3×ф1.6m炉,日供煤气量48000m3,向金城房地产公司居民小区供气,经过生产运行,气化炉的各技术指标达到设计要求。同年由国家经贸委委托河南省经贸委组织中国工程院院士岑可法教授等12位专家对"常压流化床水煤气炉"进行了新产品(新技术)鉴定(鉴定验收证号、豫经贸科鉴字1999039);河南省南阳市建设5×ф1.6m气化炉煤制气厂,日产煤气10m3(采用沼气、LPG增热)19999月向市区供气。该产品被国家经贸委、国经贸技术(1999)759号文列为1999年度国家重点新产品。

郑州永泰能源新设备有限公司,在此基础上又进行多项改进,并放大成ф2.5m炉,逐步推广到工业用气领域。

近年来上海沃和拓新科技有限公司购买了该技术实施权从事流化床水煤气站工程建设。目前采用该技术的厂家有:文登开润曲轴有限公司、南阳市沼气公司、鲁西化工;正在兴建的有高平铸管厂、二汽襄樊基地第二动力分厂、贵州毕节市、新余恒新化工、兴义市等。

总的说来该炉型号以粉煤作原料,采用鼓泡型流化床技术,根据水煤气制气工艺原理,制取中热值煤气,工艺流程短、产品单一。经过开发、制造、建设、运行、取得了可靠成熟的经验,可作为我国利用粉煤制气的城市(或工业)煤气气源。

2002年国家科学技术部批准江苏大学为《国家科技成果重点推广计划》项目"常压循环流化床水煤气炉"的技术依托单位[项目编号2002EC000198]

4.3.2 煤的气化制气,所产煤气一般是热值较低,煤气组分中一氧化碳含量较高,如要作为城市煤气主气源,前者涉及煤气输配的经济性,后者与煤气使用安全强制性要求指标(CO含量应小于20)相抵触,因此提出必须采取有效措施使气质达到现行国家标准《人工煤气》GB 13612的要求。

4.3.3 气化用煤的主要质量指标的要求是根据《煤炭粒度分级》GB 189、《发生炉煤气站设计规范》GB 50195、《常压固定床煤气发生炉用煤质量标准》GB 9143以及现有煤气站实际生产数据总结而编写的。

1 根据气化原理,要求气化炉内料层的透气性均匀,为此选用的粒度应相差不太悬殊,所以在条文中发生炉煤气燃料粒度不得超过两级。

当发生炉、水煤气作为煤气厂辅助气源时,从煤气厂整体经济利益考虑并结合两种气化炉对粒度的实际要求,粒度25mm以上的焦炭用于水煤气炉,而不用于发生炉。当煤气厂自身所产焦炭或气焦,其粒度能平衡时发生炉也可使用大于25mm的焦炭或气焦。其粒度的上、下限可放宽选用相邻两级。

煤的质量指标:

灰分:《固定床煤气发生炉用煤质量标准》GB 9143规定,发生炉用煤中含灰分的要求小于24%。由于煤气厂采用直立炉作气源时,要求煤中含灰分小于25%,制成半焦后,其灰分上升至33%。从煤气厂总体经济利益出发,这种高灰分半焦应由厂内自身平衡,做水煤气炉和发生炉的原料。由于中块以上的焦供水煤气炉,小块焦供发生炉,条文中规定水煤气炉用焦含灰分小于33%;发生炉用焦含灰分小于35%。

灰熔点(ST):在煤气厂中,发生炉热煤气的主要用途是作直立炉的加热燃料气,加热火道中的调节砖温度约1200,热煤气中含尘量较高,当灰熔点低于1250,灰渣在调节砖上熔融,造成操作困难。所以在条文中规定,当发生炉生产热煤气时,灰熔点(ST)应大于1250

2 两段煤气(水煤气)发生炉如果炉内煤块大小相差悬殊,会使大块中挥发分干馏不透,影响了干馏和气化效果,因此条文中规定用煤粒度限使用其中的一级。所使用的煤种主要是弱粘结性烟煤,为了提高煤气热值,并扩大煤源,条文中规定干基挥发分大于、等于20%。煤中干基灰分定为小于、等于25%,其理由是两段炉干馏段内半焦产率约为75%~80%,则进入气化段的半焦灰分不致高于33%。

煤的自由膨胀序数(F.S.I)和罗加指标(R.1)代表烟煤的粘结性指标(GB 5447GB 5449),两个指标起互补作用。本条文规定的指标数值对保证炉子的安全生产有很大的意义,如果指标过高,煤熔融的粘结性(膨胀量)超过干馏段的锥度,则煤层与炉壁粘附导致不能均匀下降,此时必须采取打钎操作,这样不但造成煤层不规则的大幅度下降,而且钎头多次打击炉壁,而使炉膛损坏。我国两段炉大都使用大同煤、阜新煤、神府煤等(F.S.I)均小于2(R.1)小于20

两段炉使用弱粘结性烟煤,其热稳定性优于无烟煤,因此仍采用一段炉对煤种热稳定性指标大于60%。

两段炉加煤时,煤的落差较一段炉小,但两段炉标高较高,煤提升高度大,因此对用煤抗碎强度的规定不应低于一般炉的60%的要求。

根据我国煤资源情况提出煤灰熔融性软化温度大于、等于1250,是能达到的,满足了两段炉生产的要求,不会产生结渣现象。

3 流化床水煤气炉对煤的粒度要求,最好是采用粒度(113mm)均匀的煤。目前实际供应的末煤小于13mm或小于25mm的较多,为了防止煤气的带出物过多,使灰渣含碳量降低,对lmm以下,大于13mm以上煤分别规定为小于10%和小于15%的要求。当使用烟煤作原料时,要求罗加指数小于45,以防流化床气化时产生煤干馏粘结。流化床气化,气化速度比固定床煤气化反应时间短,速度要高得多,故提出要求煤的化学反应性(o)大于30%。

4 各气化用煤的含硫量均控制在1%以内,是当前我国的环境保护政策的要求,高硫煤不准使用。

5 气化用煤的各质量指标的测定应按国家煤炭试验标准方法进行(详见表7)

4.3.5 本条文是按气化炉为三班连续运行规定的,否则,煤斗中有效储量相应减少。

按《发生炉煤气站设计规范》GB 50195规定,运煤系统为一班制工作时,储煤斗的有效储量为气化炉1820h耗煤量;运煤系统为两班制工作时,储煤斗的有效储量为气化炉1214h耗煤量;而本条文的有效储煤量的上、下限分别增加2h。因为在煤气厂中干馏炉、气化炉和锅炉等四大炉的上煤系统基本是共用的,在运煤系统前端运输带出故障修复后,四大炉需要依次供煤,排在最后供煤系统的气化炉,煤斗容量应适当增大。

备煤系统不宜按三班工作的理由是为了留有设备的充裕的检修时间。

4.3.7 各种煤气化炉煤气低热值指标的规定与炉型,工艺特点,煤的质量(气化用煤主要质量指标见表4.3.3)操作条件都有关。本条文提出的指标在正常操作条件下,一般是可以达到的,如果用户有较高的要求,可采用热值增富方法(如富氧气化或掺入LPG)

4.3.8 气化炉吨煤产气率指标与选用的炉型有关,如W-G型炉比D型炉产气量要高,煤的质量与气化率也有密切的关系,如大同煤的气化率较高。煤的粒度大小与均匀性也直接影响气化炉的产气率。所以,本条文写明要把各种因素综合加以考虑。对已用于煤气站气化的煤种,应采用平均产气率指标(指在正常、稳定生产条件下所达到的指标)。对未曾用于气化的煤种,要根据气化试验报告的产气率确定。本条文提出的产气率指标是在缺乏上述条件时,供设计人员参考。表4.3.8中的数据,由中国市政工程华北设计研究院、中元国际工程设计研究院、郑州永泰能源新设备有限公司等单位提供。

4.3.9 本条文规定气化炉每14台以下宜另设一台备用,主要是城市煤气厂供气不允许间断,设备的完好率要求高。根据城市煤气厂(设有煤干馏炉、水煤气、发生炉)气化炉的检修率一般在25%左右,对于流化床水煤气炉,该设备无转动机械部件,检修、开停方便,其设备备用率,目前尚无实践总结资料,故本条文暂按固定床气化炉情况确定。

4.3.10 对水煤气发生炉、两段水煤气发生炉,以3台编为一组再备用1台最佳,因为鼓风阶段约占13时间。3台炉共用1台鼓风机比较合理。而流化床水煤气的鼓风(或制气)阶段约为12时间,因此建议2台编为一组。由于这些气化炉均属于间歇式制气采用上述编制方法,可以保持气量均衡,这样可以合用一套煤气冷却和废气处理及鼓风设备,对于节约投资,方便管理,都有好处,实践证明是经济合理的。

目前流化床水煤气炉鼓风气温度较高,在高温阀门国内尚未解决前,其废热锅炉与气化炉应按一对一布置,便于生产切换。

4.3.12 一般循环制气炉的缓冲气罐,由于气量变化频繁,罐的上下位置移动大,若采用小型螺旋气罐易于卡轨,很多煤气厂均有反映,不得不改为直立式低压储气罐。该罐的容积定为0.51倍煤气小时产气量,完全满足需要。

4.3.13 循环制气炉因系间歇制气,作为气化剂的蒸汽也是间歇供应的,但锅炉是连续生产的。而气化炉使用蒸汽是间歇的,故应设置蒸汽蓄能器,作为蒸汽的缓冲容器。由于蒸汽蓄能器不设备用,其系统中配套装置与仪表一旦破坏,就无法向煤气炉供应蒸汽。因此,煤气站宜另设一套备用的蒸汽系统,以保证正常生产。

4.3.14 由于并联工作台数过多,其不稳定因素增加,且造成阻力损失,本条文规定并联工作台数不宜超过3台。

4.3.15 在煤气厂中,水煤气一般作为掺混气,掺混量约13。与干馏气掺混后经过脱硫才能供居民使用,而干法脱硫的最佳操作温度为2530,极限温度为45。在煤气厂内干馏煤气在于法脱硫箱前将煤气冷却至25左右,与35的水煤气混合后的温度约28.3,仍在脱硫最佳操作温度的范围内。

在煤气厂中发生炉冷煤气除作干馏气的掺混气外,主要作焦炉的加热气。如果发生炉煤气的温度增高,将影响煤气排送机的输送能力和煤气热量的利用,最终将影响焦炉加热火道的温度,造成燃料的浪费,故规定冷煤气温度不宜超过35

热煤气在煤气厂中用作直立炉的加热气,发生炉燃料多采用直立炉的半焦,焦油含量少,故规定热煤气不低于350(近年来,煤气厂发生炉煤气站多选用W-G型炉,其出口温度约300400)

煤气厂中发生炉冷煤气作为焦炉加热,并通过焦炉的蓄热室进行预热,为防止蓄热室被堵塞,故该煤气中的灰尘和焦油雾,应小于20mgm3

煤气厂的热煤气一般供直立炉加热,而热煤气目前只能作到一级除尘(旋风除尘器除尘),所以煤气中含尘量仍很高,约300mgm3。因此,在设计煤气管道时沿管道应设置灰斗和清灰口,以便清除灰尘。

4.3.16 煤气厂中的发生炉煤气站一般采用无烟煤或本厂所产焦炭、半焦作原料,所得焦油流动性极差。当煤气通过电气滤清器时,焦油与灰尘沉降在沉淀极上结成岩石状物,不易流动,很难清理。所以本条文规定发生炉煤气站中电气滤清器应采用有冲洗装置或能连续形成水膜的湿式装置。如上海浦东煤气厂的气化炉以焦炭为原料,采用这种形式的电气滤清器已运转多年,电气滤清器本身无焦油灰尘沉淀积块,管道无堵塞现象。

4.3.17 煤气厂中,煤气站基本采用焦炭和半焦为原料,所产焦油流动性极差,如用间接冷却器冷却,焦油和灰尘沉积在间冷器的管壁上,使冷却效果大大降低,且这种沉积物坚如岩石,很难清除,故本条规定煤气的冷却与洗涤宜采用直接式。

按本规范第4.3.15规定冷煤气温度不应高于35。因此,作为煤气站最终冷却的冷循环水,其进口温度不宜高于28,这个条件对煤气厂来说是做得到的,因为煤气厂主气源的冷却系统基本设有制冷设备,适当增加制冷设备容量在夏季煤气站的冷循环水进口水温即可满足不高于28的要求。

热循环水主要供竖管净化冷却煤气用,水温高时,水的蒸发系数大,热水在煤气中蒸发,吸热达到降温作用,再有水中焦油黏度小,水系统堵塞的机会少,而且其表面张力小,较易润湿灰尘,便于除尘。故规定热循环水温度不应低于55。热循环水系统除了由冷循环水补充的部分冷水及自然冷却降温外,没有冷却设备,在正常情况下,热平衡的温度均不小于55

4.3.21 放散管管口的高度应考虑放散时排出的煤气对放散操作的工人及周围人员影响,防止中毒事故的发生。因此,规定必须高出煤气管道和设备及走台4m,并离地面不小于10m

本条文还规定厂房内或距离厂房10m以内的煤气管道和设备上的放散管管口必须高出厂房顶部4m,这也是考虑在煤气放散时,屋面上的人员不致因排出的煤气中毒,煤气也不会从建筑物天窗、侧窗侵入室内。

4.3.22 为适应煤气净化设备和煤气排送机检修的需要,应在系统中设置可靠的隔断煤气措施,以防止煤气漏人检修设备而发生中毒事故,所以在条文中作出了这方面的规定。

4.3.23 电气滤清器内易产生火花、操作上稍有不慎即有爆炸危险,根据《发生炉煤气设计规范》GB 50195编制组所调查的65个电气滤清器均设有爆破阀,生产工厂也确认电气滤清器的爆破阀在爆炸时起到了保护设备或减轻设备损伤的作用。所以本条文规定电气滤清器必须装设爆破阀。 《发生炉煤气设计规范》GB 50195编制组调查中,多数工厂单级洗涤塔设有爆破阀,但在某些工厂发生了几起由于误操作或动火时不按规定造成严重爆炸事件,故条文中规定"宜设有爆破阀"以防止误操作时发生爆炸事故。

4.3.24 本条文规定厂区煤气管道与空气管道应架空敷设,其理由如下:

1 水煤气与发生炉煤气一氧化碳含量很高,前者高达37%,后者约23%~27%,毒性大且地下敷设漏气不易察觉,容易引起中毒事故。

2 水煤气与发生炉煤气中杂质含量较高,冷煤气的凝结水量较大,地下敷设不便于清理、试压和维修,容易引起管道堵塞,影响生产。

3 地下敷设基本费用较高,而维护检修的费用更高。因此,厂区煤气管道和空气管道采用架空敷设既安全又经济,在技术上完全能够做到。

由于热煤气除采用旋风除尘器外,无其他更有效的除尘设备,而旋风除尘器的效率约70%。当产量降低时,除尘器的效率更低,因此旋风除尘器后的热煤气管道沿线应设有清灰装置,以便定时清除沿线积灰,保证管道畅通。

4.3.25 爆破膜作为空气管道爆炸时泄压之用,其安装位置应在空气流动方向管道末端,因为管末端是薄弱环节,爆破时所受冲击力较大。

关于煤气排送机前的低压煤气总管是否要设置爆破阀或泄压水封的问题,根据《发生炉煤气设计规范》GB 50195编制组调查:因停电或停制气时,易有空气渗漏至低压煤气管内形成爆炸性混合气体,故本条文提出应设爆破阀和泄压水封。

4.3.26 根据我国煤气站几十年的经验,本条文规定的水封高度是能达到安全生产要求的。

热煤气站使用的湿式盘阀水封高度有低于本规范表4.3.26中第一项的规定,这种盘阀之所以允许采用,有下列几种原因:

1 由于大量的热煤气经过湿式盘阀,要考虑清理焦油渣的方便;为了经常掏除数量较多的渣,水封不能太高;

2 热煤气站煤气的压力比较稳定,一般不产生负压,水封安全高度低一些,也不致进入空气引起爆炸;

3 湿式盘阀只能装在室外,不允许装在室内,以防止炉出口压力过高时水封被突破,大量煤气逸出引起事故。

这种盘阀的有效水封高度不受表4.3.26的限制,但应等于最大工作压力(Pa表示)0.150mm水柱。由于这种盘阀只能在室外安装,允许降低其水封高度,并限于在热煤气系统中使用,所以在本条文中加注。

4.3.27 本条规定了设置仪表和自动控制的要求。

1 设置空气、蒸汽、给水和煤气等介质计量装置,是经济运行和核算成本所必须的。

4 饱和空气温度是发生炉气化的重要参数,采用自动调节,可以保证饱和空气温度的稳定,使其能控制在±0.5范围内,从而保证了煤气的质量。特别是在煤气负荷变化较大时,有利于炉子的正常运行。

6 两段炉上段出口煤气温度,一般控制在120左右。控制方式是调节两段炉下段出口煤气量。

7 汽包水位自动调节,是防止汽包满水和缺水的事故发生。

8 气化炉缓冲柜位于气化装置与煤气排送机之间,缓冲柜到高限位时,如不停止自动控制机运转将有顶翻缓冲柜的危险。所以本条文规定煤气缓冲柜的高位限位器应与自动控制机连锁。当煤气缓冲柜下降到低限位时,如果不停止煤气排送机的运转将发生抽空缓冲柜的事故。因此规定循环气化炉缓冲柜的低位限位器与煤气排送机连锁。

9 循环制气煤气站高压水泵出口设有高压水罐,目的是保持稳定的压力,供自动控制机正常工作,但当压力下降到规定值时,便无法开启和关闭有关水压阀门,将导致危险事故发生。因此规定高压水罐的压力应与自动控制机连锁。

10 空气总管压力过低或空气鼓风机停车,必须自动停止煤气排送机,以保证煤气站内整个气体系统正压安全运行。所以两者之间设计连锁装置。

11 电气滤清器内易产生火花、操作上稍有不慎即有爆炸危险,因此为防止在电气滤清器内形成负压从外面吸入空气引起爆炸事故,特规定该设备出口煤气压力下降至规定值(小于50Pa)、或气化煤气含氧量达到l%时即能自动立即切断电源;对于设备绝缘箱温度值的限制是因为煤气温度达到露点时,会析出水分,附着在瓷瓶表面,致使瓷瓶耐压性能降低、易发生击穿事故。所以一般规定绝缘保温箱的温度不应低于煤气入口温度加25(《工业企业煤气安全规程》GB 6222),否则立即切断电源。

12 低压煤气总管压力过低,必须自动停止煤气排送机,以保证煤气系统正压安全运行,压力的设计值和允许值应根据工艺系统的具体要求确定。

13 气化炉自动加煤一般依据炉内煤位高度、炉出口煤气温度及炉内火层情况,设置自动加煤机构,保持炉内的煤层稳定。气化炉出灰都是自动的,但在某一质量的煤种的条件下,在正常生产时煤、灰量之比是一定的。因此自动加煤机构和自动出灰机构一定要互相协调连锁。

14 本条是为循环制气的要求而编制的。循环气化炉(水煤气发生炉、两段水煤气发生炉、流化床水煤气炉)的生产过程:水煤气炉是"吹风一吹净一制气一吹净" (每个循环约420s),流化床水煤气是"吹风一制气一吹风"(每个循环约150s)周而复始进行,在各阶段中有几十个阀门都要循环动作,这就需要设置程序控制器指挥自动控制机的传动系统按预先所规定的次序自动操作运行。4.4 重油低压间歇循环催化裂解制气

4.4.1 本条规定了重油的质量要求。

我国虽然规定了商品重油的各种牌号及质量标准,但实际供应的重油质量不稳定,有时甚至是几种不同油品的混合物。为了满足工艺生产的要求,本条文中针对作为裂解原料的重油规定了几项必要的质量指标要求。

对条文的规定分别说明如下:

1 碳氢比(CH)指标:绝大多数厂所用重油的CH指标都在7.5以下,CH越低,产气率越高,越适合作为制气原料。根据上述情况,作出"CH宜小于7.5"的规定。

2 残炭指标:残炭量的大小决定积炭量的多少,如果积炭量多就会降低催化剂的效果,并提高焦油产品中游离碳的含量,造成处理上的困难。一般说来残碳值比较低的重油适宜于造气。故对残炭的上限值有所限制,规定了"小于12"的指标要求。

4.4.2 确定原料油储存量的因素较多,总的来说要根据原料油的供应情况、运输方式、运距以及用油的不均衡性等条件进行综合分析后确定。

炼油厂的检修期一般为15d左右,在这一期间制气厂的原料用油只能由自己的储存能力来解决。储存能力的大小既要考虑满足生产需要,又要考虑占地与基建投资的节约。综合以上因素,确定为:"一般按1520d的用油量计算"

4.4.3 本条规定了工艺和炉型的选择要求。

重油催化裂解制气工艺所生产的油制气组分与煤干馏制取的城市燃气组分较为接近,可适应目前使用的煤干馏气灶具。且由于催化裂解制气的产气量较大,粗苯质量较好,所以经济效果也是比较好的。另外,副产焦油含水较低,这对综合利用提供了有利条件。因此用于城市燃气的生产应采用催化裂解制气工艺。

采用催化裂解制气工艺时,要求催化剂床温度均匀,上下层温度差应在±100范围内,不宜再大;同时要求催化剂表面尽量少积炭,以防止局部温度升高;也不允许温度低的蒸汽直接与催化剂接触。以上这些要求是一般单、双筒炉难以达到的,而三筒炉则容易满足。

4.4.4 本条规定了重油低压间歇循环催化裂解制气工艺主要设计参数。

1 反应器的液体空间速度。

反应器液体空间速度的选取对确定炉体的大小有着直接关系。催化裂解炉实际液体空间速度与工艺计算选用的液体空间速度一般相差不大,根据国内几个厂的实际液体空间速度的数据,规定催化裂解制气的液体空间速度为0.60.65m3(m3·h)

4 关于加热油用量占总用油量的比例。加热油量占总用油量的比例与炉子大小有关,也与操作管理水平有关。现有厂的加热油量占总用油量的实际比例在15%~16%。

5 过程蒸汽量与制气油量之比值。

重油裂解主要产物为燃气和焦油,它受到裂解温度、液体空间速度和过程蒸汽量等较多条件和因素的综合影响,如处理不好就会增加积炭。因此不能孤立地确定水蒸气与油量之比值,它要受裂解温度、液体空间速度和催化床厚度等具体条件的约束,应综合考虑燃气热值和产气率的相互关系,随着过程蒸汽量与油量之比值的增加将会提高裂解炉的得热,同时对煤气的组成也有很大的影响。采用过程蒸汽的目的是促进炉内产生水煤气反应,同时要控制袖在炉内停留时间以保证正常生产。

据国外资料报道:日本北港厂建的13.2m3(d·台)蓄热式裂解炉,从平衡含氢物质的计算中推算出过程蒸汽中水蒸气分解率仅为23%,可说明在一般情况下,过程蒸汽在炉内之作用和控制在炉内停留时间二者间的数量关系;根据日本冈崎建树所作的"泊催化裂解实验的曲线"中可看出随着水蒸气和油比例的增加而气化率直线增加,热值直线下降,而总热量则以缓慢的二次曲线的坡度增加。其中:H2增加最明显;CO的增加极少;C02几乎不变;CH4和重烃类的组分有降低。说明了水蒸气和碳反应生成的H2<, SPAN lang=EN-US style="FONT-SIZE: 14pt; mso-font-kerning: 0pt">CO都不多,主要是热分解促进了H2的生成。所以过多的水蒸气对炉内温度、油的停留时间都不利。一般蒸汽与油的比值应为1.01.2范围,实际多取1.11.2较为适宜。

7 关于每吨重油催化裂解产品产率。煤气产率要根据产品气的热值确定。产品气的热值高,煤气产率低,相反,产品气的热值低,煤气产率就高,一般煤气低热值按21MJm3时,煤气产率约为11001200m3

8 我国有催化剂的专业性生产厂,其含镍量可根据重油裂解制气工艺要求而不同。目前使用的催化剂含镍量为3%~7%。

4.4.5 重油制气炉在加热期产生的燃烧废气温度较高,对余热应加以利用。对于110m3d的油制气装置,废气温度如按550计,每小时大约可生产2.3t蒸汽(饱和蒸汽压力为0.4MPa)。鼓风期产生的燃烧废气中含有的热量大约相当于燃烧时所用加热油热量的80%。如2台油制气炉设1台废热锅炉,则其产生的蒸汽可满足过程蒸汽需要量的一半,因此这部分相当可观的热量应该予以回收和利用。

因重油制气炉生产过程中会散出大量的尘粒(炭粒)污染周围环境,根据环境保护的要求应设置除尘装置。重油制气装置在不同操作阶段排放出不同性质的废气。在一加热、二加热和烧炭阶段中,烟囱排出的是燃烧废气,其中除了有二氧化碳外,还夹带着大量的烟尘炭粒。通过旋风除尘和水膜除尘设备或其他有效的除尘设备后,使含尘量小于1gm3,再通过30m以上的烟囱排放以符合环保要求。

4.4.6 重油循环催化裂解装置生产是间歇的,生产过程中蒸汽的需要也是间歇的,而且瞬时用汽量较大,而锅炉则是连续生产的,因此应设蒸汽蓄能器作为蒸汽的缓冲容器。

4.4.7 油制气炉的生产系间歇式制气,为了保持产气均衡、节约投资、管理方便,所以规定每2台炉编为一组,合用一套煤气冷却系统和动力设备,这种布置已经在实践中证明是经济合理的。

4.4.8 重油制气的冷却在开发初期一直选用煤气直接式冷却的方法。直接式冷却对焦油和萘的洗涤、冷凝都是有利的,可以洗下大量焦油和萘,减少净化系统的负荷及管道堵塞现象。考虑到污染的防治,设计中改用了间接冷却方法,效果较好,减少了大量的污水,同时也消除了水冷却过程中的二次污染现象,至于采用间冷工艺后管道堵塞问题,可以采取措施解决。如北京751厂的运行经验,在设备上用加热循环水喷淋,冬季进行定期的蒸汽吹扫,没有发生因堵塞而停止运行。如上海吴淞制气厂在199260m3d重油制气工程中,兼顾了直冷和间冷的优点,采用了直冷一间冷一直冷流程,取得了很好的效果。

4.4.9 本条规定了空气鼓风机的选择。

空气鼓风机的风压应按空气、燃烧废气通过反应器、蒸汽蓄热器、废热锅炉等设备的阻力损失和炉子出口压力之和来确定。也就是应按加热期系统的全部阻力确定。

4.4.11 本条规定是根据现有各厂的实际情况确定的。一般规模的厂原料油系统除设置总的储油罐外,均设中间油罐。原料油经中间油罐升温至80,再经预热器进入炉内,这样既保证了入炉前油温符合要求,也节省了加热用的蒸汽量。对于规模小的输油系统也有个别不设中间油罐,而直接从总储油罐处将重油加热到入炉要求的温度。

4.4.12 设置缓冲气罐的主要目的是为了保证煤气排送机安全正常运转,起到稳定煤气压力的作用,有利于整个生产系统的操作。缓冲气罐的容积各厂不一,其容量相当于20min1h产气量的范围。根据各地调查,从历年生产经验来看,该罐不是用作储存煤气,而是仅作缓冲用的,因此容量不应太大。一般按O.51.Oh产气量计算已能满足生产要求。

据沈阳、上海等厂的实际生产情况,都发现进入缓冲气罐的煤气杂质较多,有大量的油(包括轻、重油)沉积在气罐底部,故应设集油、排油装置。

4.4.14 油制气炉的操作人员经常都在仪表控制室内进行工作,很少在炉体部分直接操作,因此没有必要将炉体设备安设在厂房内。采取露天设置后的主要问题是解决自控传送介质的防冻问题,例如在严寒地区若采用水压控制系统时,就必须同时考虑水的防冻措施(如加入防冻剂等)

国内现有的油制气炉一般都布置在露天,根据近年来的生产实践均感到在厂房内的操作条件较差,尤其是夏季,厂房很热,焦油蒸气的气味很大,同时还增加了不少投资。因此除有特殊要求外,炉体设备不建厂房,所以本条规定:"宜露天布置"

4.4.15 本条规定"控制室不应与空气鼓风机室布置在同一建筑物内"。这是由于空气鼓风机的振动和噪声很大,对仪表的正常运行及使用寿命都有影响,对操作人员的身体健康也有影响。有的厂空气鼓风机室设在控制室的楼下,振动和噪声的影响很大。上海吴淞煤气制气公司、北京751厂的空气鼓风机室是单独设置的,与控制室不在同一建筑物内,就减少了这种影响,效果较好。

条文中规定了"控制室应布置在油制气区夏季最大频率风向的上风侧",气主要是防止油制气炉生产时排出的烟尘、焦油蒸气等影响控制室的仪表和控制装置。

4.4.16 焦油分离池经常散发焦油蒸气,气味很大,而且在分离池附近还进行外运焦油、掏焦油渣作业,使周围环境很脏。故规定"应布置在油制气区夏季最小频率风向的上风侧",以尽量减少对相邻设置的污染和影响。

4.4.17 重油制气污水主要来自制气生产过程中燃气洗涤、冷却设备中冷凝下来的污水和燃气冷却系统循环水经补充后的排放污水,每台10m3d制气炉的污水排放量估计在3035th,其水质为:pH7.5COD 10002000mgLBOD 200500mgL,油类250600mgL,挥发酚1065mgL。,CN 1040mgL 硫化物540mgLNH3 40mgL,可见重油制气厂应设污水处理装置,污水经处理达到国家现行标准《污水综合排放标准》GB 8978的规定。

4.4.18 本条规定了自动控制装置程序控制系统设计的技术要求

各种程序控制系统具有不同的特点,各地的具体条件也互不相同,不宜于统一规定采用程序控制系统的形式,因此本条仅规定工艺对程序控制系统的基本技术要求。

1 油制气炉生产过程是"加热一吹扫-制气-吹扫-加热……"周而复始进行的,在各阶段中许多阀门都要循环动作,就需要设置程序控制器自动操作运行。又因在生产过程中有时需要单独进入某一操作阶段(如升温、烧炭等),故程序控制器还应能手动操作。

2 生产操作上要求能够根据运行条件灵活调节每一循环时间和每阶段百分比分配。例如催化裂解制气的每一循环时间可在68min内调节;每循环中各阶段时间的分配可在一定范围内调节。

3 重油制气工艺过程在按照预定的程序自动或手动连续进行操作,为保证生产过程的安全,还需要对操作完成的正确性进行检查。故规定了"应设置循环中各阶段比例和阀门动作的指示信号"

4 主要阀门如空气阀、油阀、煤气阀等应设置"检查和连锁装置",以达到防止因阀门误动作而造成爆炸和其他意外事故,在控制系统的设计上还规定了"在发生故障时应有显示和报警信号,并能恢复到安全状态",使操作人员能及时处理故障。

4.4.19 本条规定了设计自控装置的传动系统设计技术要求。

1 国内现采用的传动系统有气压、水压、油压式几种,各有其优缺点,在设计前应考虑所建的地区、炉子大小、厂地条件、程序控制器形式等综合条件合理选择。

2 在传动系统中设置储能设备,既是安全上的技术措施,又是节省动能的手段。储能设备是传送介质管理系统的缓冲机构,其中储备一部分能量以适应在启闭大容量装置的阀门时压力急剧变化的需要,满足大负荷容量,减少传动泵功率。当传动泵发生故障或停电时,储能设备还可起到应急的动力能源作用,使油制气炉处于安全状态。

3 由于重油制气炉是间歇循环生产的,生产过程中的流量瞬时变化大、阀门换向频繁,因此传动系统中采用的控制阀、工作缸、自动阀和附件等应和这种特点相适应,使生产过程能顺利进行。

4.5 轻油低压间歇循环催化裂解制气

4.5.1 生产煤气所用的石脑油随装置和催化剂而异,一般性质为相对密度0.650.69,含硫量小于10-4,终馏点低于130,石蜡烃含量高于80%,芳香烃含量低于5%,采用这种性质的原料,其目的在于气化后:①燃气中含硫少,不需要净化装置;②不会生成焦油等副产品,所以不需要处理设备;③无烟尘及污水公害,不需要设置污水处理装置;④气化效率高。

原料油中石蜡烃高,产物中焦油和炭生成量就少,气体生成量就多,而且生成气中烃类多而氢气少,一般热值也高,当原料油中环状化合物多时,产物中焦油和炭生成量就多,气体生成量就少,而且气体含氢量多,烃类少,热值就低。原料中烯烃、芳香烃的增加会形成积炭,这些都可能导致催化剂失活。

根据国内外生产实践,本规范推荐如条文所列的对轻质石脑油的各种要求。从目前国外进口的轻质石脑油看,一般能满足上述要求,国产石脑油目前没有能满足此要求的品牌油,一般终馏点高于130,但在140以内尚能顺利操作,超过140时要谨慎操作。

4.5.2 内浮顶罐是在固定顶油罐和浮顶罐的基础上发展起来的。为了减少油品损耗和保持油品的性质,内浮顶罐的顶部采用拱顶与浮顶的结合,外部为拱顶,内部为浮顶。内部浮顶可减少油品的蒸发损耗,使蒸发损失很小。而外部拱顶又可避免雨水、尘土等异物从环形空间进入罐内污染油品。轻油制气原料油为终馏点小于130的轻质石脑油,属易挥发烃类,故选用内浮顶罐储存轻油。

确定原料油储存量的因素较多,总的来说要根据原料油的供应情况、运输方式、运距以及用油的不均衡性等条件进行分析后确定。如采用国外进口油,要根据来船大小和来船周期考虑,采用国产油则要考虑运距大小、运输方式和炼油厂的检修周期,经综合分析,一般认为按1520d的用油量储存,南京轻油制气厂设计考虑采用国外油时按20d储存量。

4.5.3 轻油间歇循环催化裂解制气装置是顺流式反应装置,它不同于重油逆流反应装置,当使用重质原料时,由于制气阶段沉积在催化剂层的炭多,利用这些炭可以补充热量,相比之下,采用石脑油为原料因沉积在催化剂层的炭很少,气体中也无液态产物,故对保持蓄热式装置的反应温度反而不利,因此采用能对吸热量最大的催化剂层进行直接加热的顺流式装置。同时裂化石脑油时,相对重油裂解而言,需要热量较少,生产能力和蒸汽用量就会大,高温气流的显热很大,鼓风阶段的空气相对用量却不多,用大量的高温气流显热去预热少量空气是不经济的,所以不设空气蓄热器,只需两筒炉,有的甚至采用单筒炉。

南京和大连进口装置的加热室均为一个火焰监视器,投产后发现其监视范围窄,后增加了一个火焰监视器,使操作可靠性增加。

4.5.4 本条文规定了轻油间歇循环催化裂解制气工艺主要设计参数:

1 反应器液体空间速度

推荐的液体空间速度为0.60.9m3(m3·h)。这个数据和炉型、催化剂、循环时间均有关,一般说UGI-CCR炉直径较小,循环时间短,其液体空间速度可取高值,而Onia-Gagi炉直径较大,循环时间长,其液体空间速度可取低值。

3 关于加热油用量与制气油用量的比例由于用于加热的轻油在燃烧时和重油制气中燃烧的重油相比,燃烧热量和效率相差不大,而用于气化的轻油却比重油制气中的气化原料重油的可用量却大得多,因而加热用油量与制气用油量的比值要比重油制气的这个参数高一些,根据国外介绍的材料和南京投产后的实际情况,推荐设计值为29100

4 过程蒸汽量与制气油量比值

由于原料质量好,轻油制气比重油制气可用碳量大,因而过程蒸汽量与制气油量之比值要大于重油制气的比值1.11.2。一般过程蒸汽和轻油的重量比应高于1.5,低于1.5时会析出炭并吸附在催化剂气孔上,造成氧化铝载体碎裂,当炭和氧化铝的膨胀系数相差10%即会产生这种现象。根据南京轻油制气厂实际数据,提出此比值宜取1.51.6

5 循环时间

循环时间25min是针对不同的轻油制气炉型操作的一个范围,对于UGI-C.C.R炉炉子直径较小,采用的循环时间短,一般在23min之间调节,南京轻油制气厂采用这种炉型,其循环时间为2min,它的特点是炉温波动较小,生成的燃气组成比较均匀。而Onia-Gagi炉,炉子设计直径较大,采用的循环时间较长,一般在45min之间调节,香港马头角轻油制气厂采用Onia-Gagi炉,其循环时间为5min,一个周期内炉温波动较大,产生的气体组成前后差别较大,但完全能满足燃料气质量要求,使阀门等设备的机械磨损可以降低。

4.5.5 石油系原料的气化装置,不管是连续式还是间歇式,生成的气体中均含有15%~20%的一氧化碳,根据我国城市燃气对人工制气质量的规定,要求气体中CO含量宜小于10%,对于CO含量多的燃气发生装置,要求设立CO变换装置,我国大连煤气厂采用的LPG改质装置上设置了CO变换装置,使出口燃气中CO含量小于5%。

CO变换设备设置时,应考虑CO变换器能维持正常化学反应工况,如果炉子为调峰操作,时开时停,则CO变换效果不会太理想。

4.5.6 本条文对轻油制气采用石脑油)增热时推荐的增热方式以及对燃气烃露点的限制。

所谓烃露点就是将饱和蒸汽加压或降低温度时发生液化并开始产生液滴的温度。用石脑油增热后的气体,将这种气体冷却或置于较低外界气温,在达到某温度时,气体中的一部分石脑油就液化,这个温度就称为露点。

城市燃气管道一般埋地铺设,并铺于冰冻线以下,为此规定石脑油增热程度限制在比燃气烃露点温度低5,使燃气在管道中不致发生结露。

4.5.7 轻油制气炉采用顺流式流程, 由制气炉出来的700750高温烟气或燃气均通过同一台废热锅炉回收余热,在加热期,将烟气温度降至250,烟气通过30m高烟囱排至大气,在制气期,将燃气温度也降至250后进-A后冷却系统。以125m3d的轻油制气装置为例,每小时坷生产8.5t蒸汽(压力以1.6MPa表压计),它可以经过蒸汽过热器过热至320后进入蒸汽透平,驱动空气鼓风机后汇入低压蒸汽缓冲罐,作制气炉制气用汽或吹扫用汽,也可以不经蒸汽透平,产生较低压力的蒸汽汇入低压蒸汽缓冲罐后使用。

如果采用CO变换流程,其余热回收要分成两部分,需要设置2个废热锅炉,一个在CO变换器前,称为主废热锅炉,用于全部烟气和部分燃气的余热回收;另一个在CO变换器后,用于全部燃气的余热回收,经燃气部分旁通进入CO变换器的温度为330,由于CO变换为放热反应,燃气离开CO变换器进入变换废热锅炉的温度为420,经二次余热回收后以l17.5m3d的装置为例,每小时可生产6t蒸汽。

4.5.8 轻油制气装置的生产属间歇循环性质,生产过程中使用蒸汽也是间歇的,而且瞬时用汽量较大,故需要设置蒸汽蓄能器作为缓冲储能以保持输出的蒸汽压力比较稳定。

轻油制气流程中烟气和燃气均通过同一台废热锅炉回收余热,产汽基本连续,蒸汽完全可能自给,除满足自给的蒸汽需要量外还可以有少量外供,因此轻油制气厂可以不设置生产用汽锅炉房。开工时的蒸汽可以采用外来蒸汽供应方式,也可以先加热废热锅炉自产供给。

4.5.9 本条文关于2台炉子编组的说明参照重油低压间歇循环催化裂解4.4.7条文说明。

4.5.10 轻油制气不同于重油制气,轻油制气所得到的为洁净燃气,燃气中无炭黑、无焦油、无萘,因而燃气的冷却宜采用直接式冷却设备,一是效果好,二是对环保有利,洗涤后的废水可以直接排放,三是投资省,冷却设备可以采用空塔或填料塔。

4.5.14 轻油制气炉的操作人员经常都在仪表控制室内进行工作,很少在炉体部分直接操作,因此没有必要将炉体设备安设在厂房内。由于以轻油为原料,其属易燃易爆物质,构成甲类火灾危险性区域,为此本条文规定"轻油制气炉应露天布置"

4.5.15 本条文控制室与鼓风机布置关系的说明参照重油低压间歇循环催化裂解制气4.4.15条文中关于"控制室不应与空气鼓风机布置在同一建筑物内"的说明。

4.5.16 轻油制气炉出来的气体经余热回收后进入水封式洗涤塔中,采用循环水冷却。根据工业循环水加入部分新鲜水起调节作用的要求,以50m3d产气量为例,经水量平衡后,每天约需排放多余的水500t,其排放水的水质根据国内外资料其数据如下:pH68BOD 20mgLCOD 10100mgL,重金属:无,颜色:清,油脂:无,悬浮物小于30mgL硫化物1mgL,从上述可见,直接排放的废水已基本上达到我国污水排放一级标准,可见,轻油制气厂可不设污水处理装置。我国南京轻油制气厂、大连LPG改质厂均没有设置工业废水处理装置,香港马头角轻油制气厂也没有设置工业废水处理装置。

4.6 液化石油气低压间歇循环催化裂解制气

4.6.1 本条规定了制气用液化石油气的质量要求。

液化石油气制气用原料的不饱和烃含量要求小于15%是基于不饱和烃量的增加会形成积炭,将会导致催化剂失活。理想的液化石油气原料是C3C4烷烃,不饱和烃含量15%是根据大连实际操作经验的上限。

4.6.3 本条规定了液化石油气低压间歇循环催化裂解制气工艺主要设计参数。

4 轻油或液化石油气间歇循环催化裂解制气工艺流程中若采用CO变换方案时,根据反应平衡的要求,提高水蒸气量,CO变换率上升。为此,过程蒸汽量与制气油量的比例将从1.51.6(重量比)上升为1.82.2,过量的增加没有必要,不但浪费蒸汽,还将增加后系统的冷却负荷。

4.7 天然气低压间歇循环催化改制制气

4.7.2 本条文主要对天然气进炉压力的波动作出规定,进炉压力一般在0.15MPa,其波动值应小于7%,以维持炉子的稳定操作,可采用增加炉前天然气的管道的直径和管道长度的方法,也可以采用储罐稳压的方法,但一般以前者方法可取。

4.7.4 本条文规定了天然气低压间歇循环催化改制制气工艺主要设计参数。

1 反应器改制用天然气催化床空间速度,其推荐值为500600m3(m3·h),这个数据和炉型、催化剂、循环时间均有关,UGI-CCR炉炉子直径小,循环时间短,其气体空间速度可取高值,而Onia-Gagi炉炉子直径较大,循环时间长,其气体空间速度可取低值。

4 过程蒸汽量与改制用天然气量之比值

由于天然气为洁净原料,可用碳量大,因而过程蒸汽量与改制用天然气量之比值和轻油制气类似,一般过程蒸汽和改制用天然气的重量比应高于l5,低于1.5时会析出碳,并吸附在催化剂气孔上,使催化剂能力降低甚至破坏催化剂。根据上海吴淞煤气制气有限公司的实际操作,提出此比值取1.51.6

5

5.1 一般规定

5.1.1 本章内容是为了满足本规范第3.2.2条规定的人工煤气质量要求,所需进行的净化工艺设计内容而作出的相应规定,并不包括天然气或液化石油气等属于外部气源的净化工艺设计内容。

5.1.2 本章增加了一氧化碳变换及煤气脱水工艺,考虑到一氧化碳变换过程的主要目的是降低煤气中的有毒气体一氧化碳的含量,而煤气脱水的主要目的是为除去煤气中的水分,都属于净化煤气的工艺过程,因此将一氧化碳变换及煤气脱水工艺加入到煤气净化工艺中。

5.1.4 本章对煤气初冷器、电捕焦油器、硫铵饱和器等主要设备的有关备用设计问题都已分别作了具体规定。但是对于泵、机及槽等一般设备则没有一一作出有关备用的规定,以避免过于繁琐。净化设备的类型繁多,并且各种设备都需有清洗、检修等问题,所以本规定要求""指的是在设计中对净化设备的能力和台数要本着经济合理的原则适当考虑"留有余地",也允许必要时可以利用另一台的短时间超负荷、强化操作来做到出厂煤气的杂质含量仍能符合《人工煤气》GB 13612的规定要求。

5.1.5 煤气的净化是将煤气中的焦油雾、氨、萘、硫化氢等主要杂质脱除至允许含量以下,以保证外供煤气的质量符合指标要求,在此同时还生成一些化工产品,这些产品的生成是与煤气净化相辅相成的,所以煤气净化有时也通称为"净化与回收"

事实上,在有些净化工艺过程中,往往因未考虑回收副反应所生成的化工产品而使正常的运行难以维持,因此煤气净化设计必须与化工产品回收设计相结合。这里所指的化工产品实质上包括两种:一种是净化过程中直接生成的化工产品如硫铵、焦油等;另一种是由于副反应所生成的化工产品如硫代硫酸钠、硫氰酸钠等。

5.1.6 本条所列之爆炸和火灾区域等级是根据《爆炸和火灾危险环境电力装置设计规范》GB 50058并按该篇原则结合煤气净化各部分情况确定。

附录表B-1中鼓风机室室内、粗苯(轻苯)泵房、溶剂脱酚的溶剂泵房、吡啶装置室内应划为甲类生产场所,详见《建筑设计防火规范》GBJ 16附录三。初冷器、电捕焦油器、硫铵饱和器、终冷、洗氨、洗苯、脱硫、终脱萘等煤气区和粗苯蒸馏装置、吡啶装置、溶剂脱酚装置的室外区域均为敞开的建构筑物,通风良好,虽然处理的介质为易燃易爆介质,但塔器、管道等密封性好,不易泄漏。按照《建筑设计防火规范》GBJ 16生产的火灾危险性分类注①,应划为乙类生产场所。

附录表B-2煤气净化车间主要生产场所爆炸和火灾危险区域等级。

当粗苯洗涤泵房、氨水泵房未被划人以煤气为释放源划分为2区内时,应划为非危险区;当粗苯洗涤泵房、氨水泵房被划入以煤气为释放源划分的2区内时,则应划为2区。

理由:洗苯富油的闪点为4560℃,洗苯的操作温度低于30;氨气的爆炸极限为15.7%~27.4%,与氨水相平衡的气相中氨气的浓度达不到此爆炸极限,都不符合《爆炸和火灾危险环境电力装置设计规范》GB 50058中第2.1.1条中的条件,所以富油和氨水都不应作为释放源划分危险区,因此当粗苯洗涤泵房、氨水泵房未被划人以煤气为释放源划分的2区内时,应划为非危险区。当粗苯洗涤泵房、氨水泵房被划入以煤气为释放源划分的2区内时,则应划为2区。此外,根据《爆炸和火灾危险环境电力装置设计规范》GB 50058,所有室外区域不应整体划为某类危险区,应以释放源和释放半径划分危险区,这是比较科学准确的,且与国际接轨。

《焦化安全规程》GB 12710是在《爆炸和火灾危险环境电力装置设计规范》GB 50058之前根据老规范制定的,此时仅以区域划分爆炸和火灾危险类别,没有释放源的划分概念。在GB 50058制定后,GB 12710中的爆炸和火灾危险区域的划分有些内容不符合GB 50058中的规定,因此《焦化安全规程》中的有些内容未被引用到本规范中。

5.1.7 一些老的,简单的净化工艺往往只考虑以煤气净化达标为目的,对于那些从煤气中回收下来的废水、废渣和在煤气净化过程中所产生的废水、废渣、废气及噪声往往没有进行进一步的处理,因而对环境造成二次污染。随着我国对环境保护要求的提高,在净化工艺设计中应对煤气净化生产工艺过程产生的三废及噪声进行防治处理,并满足现行国家有关的环境保护的规范、标准的要求。

5.1.8 目前工业自动化水平已发展得越来越快,提高煤气净化工艺的自动化监控水平,是提高生产效率,改善劳动条件,降低成本,保障安全生产的重要措施。

5.2 煤气的冷凝冷却

5.2.1 煤干馏气的冷凝冷却工艺形式,在我国少数制气厂、焦化厂(如镇江焦化厂、南沙河焦化厂、上海吴淞炼焦制气厂等)曾经采用直接冷凝冷却工艺。这些工厂处理的煤气量一般较少(多为5000m3h),故煤气中氨的脱除采用水洗涤法。

水洗涤法直接冷却煤气工艺的优点是,洗涤水在冷却煤气的同时,还起到冲刷煤气中萘的作用,其缺点是,制取的浓氨水销售不畅,增加了废气和废水的处理负荷。所以,煤干馏气的冷凝冷却一般推荐间接冷凝冷却工艺。

高于50的粗煤气宜采用间接冷却,此阶段放出的热量主要是为水蒸汽冷凝热,传热效率高,萘不会凝结造成设备堵塞。当粗煤气低于50时,水汽量减少,间冷传热效率低,萘易凝结,此阶段宜采用直接冷却。日本川铁千叶工场首创了"-直混冷工艺"1979年石家庄焦化厂建成了间直混冷的试验装置。上海宝山钢铁厂焦化分厂的焦炉煤气就依据上述原理采用间冷和直冷相结合的初冷工艺。煤气进入横管式间接冷却器被冷却到5055℃,再进入直冷空喷塔冷却到2535℃。在直冷空喷塔内向上流动的煤气与分两段喷洒下来的氨水焦油混合液密切接触而得到冷却。循环液经沉淀析出除去固体杂质后,并用螺旋板换热器冷却到25左右,再送到直冷空喷塔上、中两段喷洒。由于采用闭路液流系统,故减少了环境的污染。

5.2.2 为了保证煤气净化设备的正常操作和减轻煤气鼓风机的负荷,要求在冷却煤气时尽可能多地把萘、焦油等杂质冷凝下来并从系统中排出。为了达到这一目的就需对初冷器后煤气温度有一定的限制,一般控制在2025为好。如石家庄东风焦化厂因为采取了严格控制初冷器出口温度为(20±2)℃范围之内的措施,进入各净化设备之前煤气中萘含量就很少,保证了净化设备的正常运行,见表11

11 某焦化厂各净化设备后煤气中萘含量取样点      萘含量(mgm3) 温度()        

鼓风机后     1088    25(煤气)        

2洗氨塔后   651              

终冷塔后     353      1821      终冷水上温度(15)

1 冷却后煤气的温度。当氨的脱除是采用硫酸吸收法时,一般来说煤气处理量往往较大(大于或等于10000m3h)。在这种情况下,若要求初冷器出口煤气温度太低(25),则需要大量低温水(2324t1000m3干煤气),这是十分困难的(尤其对南方地区)。再则煤气在进入饱和器之前还需通过预热器把煤气加热到7080。故在工艺允许范围内初冷器出口煤气温度可适当提高。

当氨的脱除是采用水洗涤法时,一般来说煤气处理量往往较少(-般为5000m3h),需要的冷却水量不太多,故欲得相应量的低温水而把煤气冷却到25是有可能的。再如若初冷时不把煤气冷却到25,则当洗氨时也仍须把煤气冷却到25左右,而这样做是十分不合理的(因煤气中萘和焦油会将洗氨塔堵塞)。故要求初冷器出口煤气温度应小于25

初冷器的冷却水出口温度。为了防止初冷器内水垢生成,又要照顾到对冷却水的暂时硬度不宜要求过分严格(否则导致水的软化处理投资过高),因此需要控制初冷器出口水的温度。排水温度与水的硬度有关。见表12

12 排水温度与水硬度关系碳酸盐硬度(mmol/L(me/L)    排水温度()

2.5(5)  45 

3 (6)  40 

3.5 (7)     35 

5 (10) 30 

在实际操作中一般控制小于50。在设计时应权衡冷却水的暂时硬度大小及通过水量这两项因素,选取一经济合理的参数,而不宜做硬性的规定。

2 本款制定原则是根据节约用水角度出发的。我国许多制气厂、焦化厂的初冷器冷却水是采用循环使用的。例如大连煤气公司、鞍钢化工总厂、南京梅山焦化厂等均采用凉水架降温,循环使用皆有一定效果。但我国地域广大,各地气象条件不一,尤其南方气温高,湿度大,凉水架降温作用较差。

在冷却水循环使用过程中,由于蒸发浓缩水中可溶解性的钙盐、镁盐等盐类和悬浮物的浓度会逐渐增大,容易导致换热设备和管路的内壁结垢或腐蚀,甚至菌藻类生物的生长。为了消除换热设备和管路内壁结垢堵塞或减弱腐蚀被损坏,延长设备使用寿命,提高水的循环利用率,国内外大多在循环水中投加药剂进行水质的稳定处理。

不同地区的水质不尽相同,因此在循环水中投加的药剂品种和数量亦不相同,可选用的阻垢缓蚀的药剂举例如下:

1)有机磷酸盐:如氨基三甲叉磷酸盐(ATMP),羟基乙叉磷酸盐(HEDP),能与成垢离子Ca2+、Mg2+等形成稳定的化合物或络合物,这样提高了钙、镁离子在水中的溶解度,促使产生一些易被水冲掉的非结晶颗粒,抑制CaC03MgC03等晶格的生长,从而阻止了垢物的生成;

2)聚磷酸盐:如六偏磷酸钠,添入循环水中,既有阻垢作用也有缓蚀作用;

3)聚羧酸类:如聚丙烯酸钠(TS-604)添入循环水中也有阻垢作用和缓蚀作用。

循环水中投加阻垢缓蚀的药剂,一般是复合配制的。

在设计中,如初冷器的循环冷却水系统中,一般有加药装置,配好的药剂由泵送人冷却器的出水管中,加药后的冷却水再流入吸水池内,再用循环水泵抽送入初冷器中循环使用。

循环冷却水中添加适宜的药剂,都有良好的阻垢和缓腐蚀作用。例如平顶山焦化厂对初冷器循环水的稳定处理进行了标定总结:循环水量1050m3h,加药运行阶段用的药剂为羟基乙叉磷酸盐(HEDP)、聚丙烯酸钠(TS-604)及六偏磷酸钠等,运行取得了良好的效果,阻垢率达99%,腐蚀速度小于0.01mm/年,循环水利用率为97%,达到国内外同类循环水处理技术的先进水平。又如,上海宝钢焦化厂循环冷却水采用了水质稳定的处理技术,投产数年后,初冷器水管内壁几乎光亮如初,获得了显著的阻垢和缓蚀效果。

 

律师事务所 简介
   拆迁律师土地律师离婚律师法律顾问 黑龙江龙房川律师事务所(http://www.55577555.com/)专业房地产律师,为企事业机关单位及个人等提供: 拆迁律师土地律师离婚律师工程合同律师拆迁合同二手房合同法律顾问, 房地产开发纠纷、土地项目建设纠纷、建筑施工纠纷、设备安装采购、土地使用权的出租、出让,一手房二手房买卖、物业纠纷、抵押、租赁、拆迁、项目交易等相关法律服务。 黑龙江龙房川律师事务所成立于二零零四年一月八日,是专业房地产律师事务所,主要为房地产企业及涉及房地产业务的企事业机关单位,提供 拆迁律师土地律师离婚律师工程合同律师拆迁合同二手房合同法律顾问、房产交易、项目交易等相关房地产法律服务。 工程合同律师拆迁合同二手房合同
1、拆迁律师
    黑龙江龙房川律师事务所是黑龙江专业的房地产律师事务所,在多年的土地拆迁法律工作中锻炼出了一支专业的、资深的精英拆迁律师团队。 在这支拆迁律师团队中,至优至善的法律运作水准是我们专业的体现。作为全省最资深的拆迁律师团队,我们能够为您提供专业的拆迁调查,拆迁补偿标准计算,拆迁行为合法性方面的法律意见,以及在拆迁过程中的见证、代书、谈判、申请裁决、听证、申请行政复议、诉讼等方面的代理服务。 一个由资深拆迁律师组成的专业拆迁律师团队,秉承“坚信正义、坚守道义、坚持公义”的理念,将是您法律权益的最强捍卫者。
2、土地律师
    黑龙江龙房川律师事务所是一家专业性的土地房产律师事务所。凭借多年积累的办案经验及多名优秀土地律师组成一个强大的土地律师团队。农用地、建设用地、非利用地等土地问题,是土地律师的专业领域。土地使用权纠纷,土地征收,土地转让,土地合同,土地租赁,土地承包,土地侵权,土地确权等各类疑难,复杂土地案件,都可以由我们专业的土地律师为你提供全套的解决方案。土地方面的法律问题是土地律师的舞台,而土地律师也将维护您的一切土地权益。
3、离婚律师
    黑龙江龙房川律师事务所还特别组建了专业的离婚律师团队,离婚律师专门办理与婚姻关系相关的法律服务;专业的离婚律师团队在承办案件过程中能够深刻领会当事人真实意图,掌握当事人的“合”与“离”的精神实质与法律内涵,运用灵活的工作方法,为当事人圆满的解决问题。离婚律师涉及的具体业务范围包括婚前、婚内财产见证、提供法律咨询,进行解除婚姻关系利弊的分析、相关诉讼证据的调查、起草离婚协议、财产分割协议、子女抚养、老人赡养、离婚调解、诉讼等。
4、工程合同律师
    黑龙江龙房川律师事务所工程合同律师团队由经验丰富的工程合同律师组成,工程合同律师工作数年来,先后代理了各类工程合同案件,其中,多位工程合同律师还担任大型房地产开发企业的法律顾问,法律理论功底深厚,诉讼及非诉代理经验丰富。工程合同律师为房地产开发企业在项目投资方面进行法律论证,出具项目法律意见书、资信调查报告、风险评估报告等。工程合同律师长期从事合同法、民法、建筑法领域的研究与案件代理工作,在建设工程施工合同、地质勘探合同、监理合同、审计合同、评估合同等方面积累了丰富的实践经验。
5、拆迁合同
    许多面临被拆迁的单位和个人在遇到拆迁问题的时候,第一时间想到的是,如何让自身的合法权益在拆迁合同中最大化,但是很多老百姓对拆迁知识一无所知,唯一能想到的解决办法是上网搜索与拆迁合同相关的法律常识。虽然网上的拆迁合同版本五花八门,但涉及拆迁合同中的关键问题,确经常被一带而过。老百姓不能从网上得到“实实在在”的实惠。为此,黑龙江龙房川律师事务所的专业拆迁律师团队在了解您需求的同时,可以为您量身打造一份优越的拆迁合同。
6、二手房合同
    随着二手房交易市场的火爆攀升,二手房已经成为大多数“保守型”投资者的首选。但是随着二手房交易量的增多,以前二手房合同中不常见的法律问题,已经渐渐浮出水面。常规的二手房合同已经不能满足广大客户的需求。资金监管、贷款、税费等问题,已经成为买卖双方关注的焦点。导致该现象出现的主要原因是,常规的二手房合同不能紧跟政策调整的步伐,为不诚信的交易主体提供了毁约的机会,最终导致二手房合同无法履行。为此,黑龙江龙房川律师事务所的专业二手房律师,将会结合最新的政策法规为您量身打造一份“零风险”的二手房合同。
7、法律顾问
    黑龙江龙房川律师事务所现为近百家企业的法律顾问,为各大企业经营提供法律政策上的支持与帮助,专业的法律顾问通过法律咨询、合同审核及起草、专项合同起草审核、专项事务法律论证和处理、出具律师函、规范法务工作流程及其他法律事务来推动和促进交易安全,防止和减少法律纠纷的发生。如遇到不可避免的诉讼,作为企业的法律顾问一定会最大限度地减少公司损失。同时,法律顾问还为公司的投资决策建言献策保驾护航。黑龙江龙房川律师事务所的法律顾问团队将竭诚为各大企业提供最专业的“一条龙”服务。
版权所有:黑龙江龙房川律师事务所
地址:哈尔滨市南岗区三姓街126号 电话:0451-82538886 QQ:461000555
黑ICP备09033033号-1 投诉电话:55577555